Научные революции в естествознании, их основные виды и черты

Автор работы: Пользователь скрыл имя, 07 Ноября 2013 в 19:33, контрольная работа

Краткое описание

Развитие естествознания не является монотонным процессом количественного накопления знаний об окружающем мире. В развитии науки время от времени возникают переломные этапы, кризисы, выход на качественно новый уровень знаний, который радикально изменяет прежнее видение мира или картину мира. Такие переломные в истории науки этапы называют научными революциями. Научная революция есть процесс коренного, качественного переворота знаний и представлений о мире, вызванный научными достижениями и открытиями; это коренная ломка представлений о строении мира и положения в нем человека, великий поворот в мышлении, перелом в развитии науки. При этом старое, занимавшее до тех пор господствующее положение, заменяется на новое, а не переделывается постепенно шаг за шагом.

Вложенные файлы: 1 файл

1.doc

— 228.00 Кб (Скачать файл)

Важным событием в развитии генетики стало открытие мутаций — возникающих внезапно изменений в наследственной системе организмов и потому могущих привести к устойчивому изменению свойств гибридов, передаваемых и далее по наследству. Своим возникновением мутации обязаны либо случайным в развитии организма событиям (их обычно называют естественными или спонтанными мутациями), либо искусственно вызываемым воздействиям (такие мутации часто именуют индуцированными). Все виды живых организмов (как растительных, так и животных) способны мутировать, т. е. давать мутации. Это явление — внезапное возникновение новых, передающихся по наследству свойств — известно в биологии давно. Однако систематическое изучение мутаций было начато голландским ученым Хуго де Фризом, установившим и

сам термин «мутации». Было обнаружено, что индуцированные мутации могут возникать в результате радиоактивного облучения организмов, а также могут быть вызваны воздействием некоторых химических веществ.

Следует отметить первооткрывателей  всего того, что связано с мутациями. Советский ученый-микробиолог Георгий Адамович Надсон (1867-1940) вместе со своими коллегами и учениками установил в 1925 году воздействие радиоизлучения на наследственную изменчивость у грибов. Известный американский генетик Герман Джозеф Меллер (1890-1967), работавший в течение 1933-1937 годов в СССР, обнаружил в 1927 году в опытах с дрозофилами сильное мутагенное действие рентгеновских лучей. В дальнейшем было установлено, что не только рентгеновское, но и любое ионизированное облучение вызывает мутации.

Достижения генетики (и биологии в целом) за прошедшее после выхода в свет книги Дарвина «Происхождение видов» время так значительны, что было бы удивительно, если бы все это никак не повлияло на дарвиновскую теорию эволюции. Два фактора: изменчивость и наследственность, которым Дарвин придавал большое значение, получили более глубокое толкование.

Итак, дальнейшее развитие биологии и входящей в нее составной частью генетики, во-первых, еще более укрепило дарвиновскую теорию эволюции живого мира и, во-вторых, дало более глубокое толкование (соответствующее достигнутым успехам в биологии) понятиям изменчивости и наследственности, а следовательно, всему процессу эволюции живого мира. Более того, можно сказать, что успехи биологии выдвинули эту науку в ряды лидеров естествознания, причем наиболее поразительные ее достижения связаны с изучением процессов, происходящих на молекулярном уровне.

Молекулярная  биология

Прогресс в области изучения макромолекул до второй половины нашего века был сравнительно медленным, но благодаря технике физических методов анализа, скорость его резко возросла.

У. Астбери ввел в науку термин «молекулярная биология» и провел основополагающие исследования белков и ДНК. Хотя в 40-е годы почти повсеместно господствовало мнение, что гены представляют собой особый тип белковых молекул, в 1944 году О. Звери, К. Маклеод и М. Мак-карти показали, что генетические функции в клетке выполняет не белок, а ДНК. Установление генетической роли нуклеиновых кислот имело решающее значение для дальнейшего развития молекулярной биологии, причем было показано, что эта роль принадлежит не только ДНК, но и РНК (рибонуклеиновой кислоте).

Расшифровку молекулы ДНК произвели  в 1953 году Ф.Крик (Англия) и Д.Уотсон (США). Уотсону и Крику удалось построить модель молекулы ДНК, напоминающую двойную спираль.

Наряду с изучением нуклеиновых  кислот и процессом синтеза белка в молекулярной биологии большое значение с самого начала имели исследования структуры и свойств самих белков. Параллельно с расшифровкой аминокислотного состава белков проводились исследования их пространственной структуры. Среди важнейших достижений этого направления следует назвать теорию спирали, разработанную в 1951 году Э. Полингом и Р. Кори. Согласно этой теории, полипептидная цепь белка не является плоской, а свернута в спираль, характеристики которой были также определены.

Несмотря на молодость молекулярной биологии, успехи, достигнутые ею в этой области, ошеломляющи. За сравнительно короткий срок были установлены природа гена и основные принципы его организации, воспроизведения и функционирования. Полностью расшифрован генетический код, выявлены и исследованы механизмы и главные пути образования белка в клетке. Полностью определена первичная структура многих транспортных РНК. Установлены основные принципы организации разных субклеточных частиц, многих вирусов, и разгаданы пути их биогенеза в клетке.

Другое направление молекулярной генетики — исследование мутации генов. Современный уровень знаний позволяет не только понять эти тонкие процессы, но и использовать их в своих целях. Разрабатываются методы генной инженерии, позволяющие внедрить в клетку желаемую генетическую информацию. В 70-е годы появились методы выделения в чистом виде фрагментов ДНК с помощью электрофореза.

В 1981 году процесс выделения генов и  получения из них различных цепей  был автоматизирован. Генная инженерия в сочетании с микроэлектроникой предвещают возможности управлять живой материей почти так же, как неживой.

В последнее  время в средствах массовой информации активно обсуждаются опыты по клонированию и связанные с этим нравственные, правовые и религиозные проблемы. Еще в 1943 году журнал «Сайенс» сообщил об успешном оплодотворении яйцеклетки в «пробирке». Далее события развивались следующим образом.

1973 год  — профессор Л. Шетлз из  Колумбийского университета в  Нью-Йорке заявил, что он готов  произвести на свет первого «бэби из пробирки», после чего последовали категорические запреты Ватикана и пресвитерианской церкви США.

1978 год  — рождение в Англии Луизы  Браун, первого ребенка «из  пробирки».

1997 год  — 27 февраля «Нейчур» поместил  на своей обложке — на фоне микрофотографии яйцеклетки — знаменитую овечку Долли, родившуюся в институте Рослин в Эдинбурге.

1997 год  — в самом конце декабря  журнал «Сайенс» сообщил о  рождении шести овец, полученных по рослинскому методу. Три из них, в том числе и овечка Долли, несли человеческий ген «фактора IX», или кровоостанавливающего белка, который необходим людям, страдающим гемофилией, то есть несвертываемостью крови.

1997 год  — чикагский физик Сиди объявляет  о создании лаборатории по клонированию людей: он утверждает, что отбоя от клиентов у него не будет.

1998 год,  начало марта — французские  ученые объявили о рождении клонированной телочки.

Все это  открывает уникальные перспективы  для человечества.

Клонирование  органов и тканей — это задача номер один в области трансплантологии, травматологии и в других областях медицины и биологии. При пересадке клонированного органа не надо думать о подавлении реакции отторжения и возможных последствиях в виде рака, развившегося на фоне иммунодефицита. Клонированные органы станут спасением для людей, попавших в автомобильные

аварии  или какие-нибудь иные катастрофы, или  для людей, которым нужна радикальная помощь из-за заболеваний пожилого возраста (изношенное сердце, больная печень и т. д.).

Самый наглядный эффект клонирования — дать возможность бездетным людям иметь своих собственных детей. Миллионы семейных пар во всем мире страдают, будучи обреченными оставаться без потомков.

Расшифровка генома человека

Первоначально (в 1988 году) средства на изучение генома человека выделило Министерство энергетики США, и одним из руководителей программы «Геном человека» стал профессор Чарлз Кэнтор.

В 1990 году Нобелевский лауреат Джеймс Уотсон начал лоббирование конгресса США, и вскоре конгресс распорядился выделить сразу сотни миллионов долларов на изучение генома человека. Эти средства были добавлены к бюджету Министерства здравоохранения, оттуда они перетекли в ведение дирекции сети институтов, объединенных под общим названием — Национальные институты здоровья (National Institutes of Health, сокращенно NIH). В составе NIH появился новый институт — Национальный институт исследования генома человека (NHGRI, директор Фрэнсис Коллинз).

В мае 1992 года ведущий сотрудник  NIH Крэйг Вентер подал заявление об уходе и объявил о создании нового, частного исследовательского учреждения — Института геномных исследований (The Institute for Genomic Research, сокращенно — TIGR или ТИГР).

Ожидание гигантских прибылей от будущего внедрения результатов изучения геномов хорошо поняли не только в США. В ведущих странах Запада началась настоящая гонка в отношении вклада средств в исследования геномов. 3 мая 1999 года британский «Велком траст» (формально правительство Великобритании финансирует британскую часть проекта «Геном человека» через этот частный благотворительный фонд) добавил дополнительно 100 млн фунтов стерлингов (примерно 167 млн долларов) нескольким английским лабораториям, занимающимся исследованиями генома человека, из них 77 млн долларов было выделено на 1999 год Сэнгеровскому центру в Кэмбридже.

При первоначальном объявлении сроков завершения проекта в 2003 году предполагалось, что точность исследования генома составит 99,99%. Потом сроки подвинули, основываясь на том, что для биологов и медиков хватит и 90% -ной точности, зато отрапортовать о завершении генома можно будет к концу 2000 года.

2 декабря 1999 года журнал «Nature» обнародовал данные, касающиеся крупного прорыва в исследовании генома человека: в основном усилиями английских ученых при активном участии других европейских, японских и американских лабораторий был завершен полный анализ одной из хромосом человека (правда, одной из самых маленьких) — хромосомы 22.

На этом гонка отнюдь не затихла. Как сообщил журнал «Science» со ссылкой на газету «Ле Монд»от 14 мая 1999 года, французское правительство решило в этот момент «впрыснуть» дополнительно 330 млн долларов на ближайшие три года в бюджет расположенного рядом с Парижем исследовательского центра генома в Иври.

В июне 1999 года Германия, которая до этого выделяла явно недостаточно средств на исследования генома человека (всего 23 млн долларов в год, начиная с 1996 года), изменила свой подход: на ближайшие пять лет было отпущено 550 млн долларов. В ноябре — декабре 1999 года стало ясно, что ученым удалось убедить правительство увеличить ежегодные траты на исследования генома человека до 280 млн долларов.

13 июля 1999 года об увеличении  выделяемых средств на работы  по исследованию генома человека  объявило правительство Японии.

То, что участвовавшая в начале создания международного проекта «Геном человека» Россия фактически приостановила свой вклад в него, можно рассматривать однозначно отрицательно: Россия обрекает себя в этом отношении на скатывание на уровень второстепенных государств, обреченных на экономическую зависимость в будущем от тех, кто вложил средства в эту перспективную научную область. 

Описание генома человека ученым удалось  получить значительно раньше планировавшихся  сроков (2005-2010 гг.). Уже в канун нового, XXI века были достигнуты сенсационные результаты в деле реализации указанного проекта. Оказалось, что в геноме человека — от 30 до 40 тысяч генов (вместо предполагавшихся ранее 80—100 тысяч). Это ненамного больше, чем у червяка (19 тысяч генов) или мухи-дрозофилы (13,5 тысяч).

Расшифровка генома человека дала огромную, качественно новую научную информацию для фармацевтической промышленности. Вместе с тем оказалось, что использовать это научное богатство фармацевтической индустрии сегодня не по силам. Нужны новые технологии, которые появятся, как предполагается, в ближайшие 10-15 лет. Именно тогда станут реальностью лекарства, поступающие непосредственно к больному органу, минуя все побочные эффекты. Выйдет на качественно новый уровень трансплантология, получит развитие клеточная и генная терапия, радикально изменится медицинская диагностика и т. д.

    1.  Кибернетика и синергетика

Впервые термин кибернетика встречается  у древнегреческого философа Платона и означает искусство управлять кораблем (искусство кормчего), а в переносном смысле - искусство управления людьми. Долгое время этим термином не пользовались. Только в 1948 г. этот термин был взят на вооружение известным американским математиком Норбертом Винером, который опубликовал книгу «Кибернетика, или управление и связь в животном и в машине».

Данная работа Винера наряду с книгой фон Неймана и О. Моргенштерна «Теория игр и оптимальное поведение» (1944 г.) оказались весьма продуктивными для становления электронно-вычислительной техники.

Кибернетика поставила в центр  внимания такие понятия как информация, обратная связь, управление и др. На основе идей Винера удалось создать общую теорию информации и связи, применимую в самых различных областях — от физики до биологии и языкознания. В развитии теории информации важную роль сыграли также работы советских ученых А.Н. Колмогорова и А.Я. Хинчина.

В кибернетике были предприняты  первые серьезные усилия по научному исследованию феномена самоорганизации. Кибернетика имела дело как с живыми, так и с техническими (построенными из неживого вещества) управляемыми и саморегулирующимися системами, т.е. с системами, в которых самоорганизация заложена изначально.

Кибернетику интересовали гомеостатические системы, поддерживающие свое функционирование в заданном режиме. Само понятие гомеостазиса указывает на то, что в гомеостатической системе речь может идти только о самоорганизации, направленной на достижение оптимальной структуры ее элементов. Такая идея позволяет понять факт устойчивости и сохранения систем (в том числе живых). Но с позиций гомеостазиса нельзя понять как возникают новые системы, причем не только в живой, но и в неорганической природе. К тому же, проблема гомеостазиса в кибернетике рассматривается с чисто функциональной точки зрения и поэтому в ней не анализируются конкретные механизмы самоорганизации.

В настоящее время считается  установленным, что процессы самоорганизации (так же как, разумеется, и дезорганизации) могут происходить в сравнительно простых физических и химических средах неорганической природы. А это означает, что простейшая, элементарная форма самоорганизации имеет место уже в рамках физической и химической форм движения материи. Причем, чем сложнее форма движения материи, тем выше уровень ее самоорганизации.

Информация о работе Научные революции в естествознании, их основные виды и черты