Автор работы: Пользователь скрыл имя, 27 Сентября 2013 в 15:42, курсовая работа
Работа над выражением тесно связано с изучением самих действий и оказывает большое влияние на владение школьниками такими понятиями, как равенства, неравенства, уравнения. И поэтому, недостаточно ясное представление о простейших выражениях сумме и разности двух чисел является причиной ошибок при выполнении первоклассниками ряда заданий. Только глубокое понимание структуры выражения и твердое знание правил порядка действий могут предупредить дальнейшее непонимание предмета.
Все это обязывает к необходимости разработки системы упражнений по формированию понятия выражения у учащихся начальной школы с учетом возникающих трудностей.
Введение.
Глава I. Исторические и психолого-педагогические основы темы «Математические слова и предложения. Развитие логического мышление при изучение элементов алгебры и математической логики.»
§ 1. История возникновения математической логики и алгебры.
§ 2. Математический язык. Понятие о математических словах и предложениях.
§ 3. Анализ заданий школьного учебника второго класса. Система дополнительных упражнений на развитие логического мышления учащихся.
Глава II. Методика изучения элементов алгебры и математической логики.
§ 1. Методика изучения числовых выражений, выражений с переменными, числовых равенств и неравенств, уравнений.
§ 2. Различные трактовки введения понятий алгебры и математической логики.
§ 3. Разработка конспектов уроков по теме.
§ 4. Материал для внеклассной работы.
§ 5. Эксперимент.
Заключение.
Литература.
Урок математики очень оживляют учебные задания творческого характера. Детям необходимо составить неравенство. На доске записана левая часть неравенства 72 : 6 и знак сравнения «>». Подумайте, какое выражение надо записать в правой части неравенства, чтобы значение левого выражения было в четыре раза больше правого? 72 : 6 > 72 : o. Предлагается делитель 24.
В эту работу следует активно включать слабых учащихся. Затем дети самостоятельно составляют неравенства. При самостоятельном выполнении слабым учащимся предлагаются карточки с методической помощью:
72 : 2 > 72 : 6
72 : 3 > 72 : o
72 : 4 > o : o
72 : o > o : o
Главное, чтобы учитель осознавал психолого-пелогогическую основу учебных заданий – развитие учащихся.
Порядок действий.
Объяснение нового по таблице «порядок действий» помогает детям быстрее и более прочно усвоить этот новый для них материал. Таблица является как бы моделью темы.
Таким образом дети самостоятельно изучают тему, а учитель руководит их мыслительной деятельностью. На первом этапе, главное – научить разбираться в порядке действий.
На следующем этапе предлагаются примеры в три и четыре действия. Затем появляются примеры с использованием скобок и в помощь предлагается таблица:
1 - 2 +
o o + o = o
o o - o = o 1 +
Выполняй по очереди 2 –
Спеши на помощь
(o - o) + o = o
o - ( o + o) = o
Таблица образно напоминает, что в первую очередь надо выполнять действия в скобках.
Поиск и творчество.
Как
добиться твердого усвоения
На доске записан пример: 96 – 28 : 4 + 36 · 2. Определить порядок действий только над действиями деления и умножения: 96 – 28 : 4 + 36 · 2. Выполняем их по порядку: 1) 28 : 4 = 7; 2) 36 · 2 = 72. Затем переписываем числовое выражение в упрощенном виде: 96 – 7 + 72. Снова обозначаем порядок действий: 96 – 7 + 72. Заканчиваем его решение: 3) 96 – 7= 89; 4) 89 + 72 = 161.
Для выработки твердых
навыков, правильных и быстрых устных
вычислений на каждом уроке выделяется
5 – 10 минут для проведения тренеровочных
упражнений. Но чтобы не пропадал интерес
к устному счету можно
На внутренней стороне доски вешаются кармашки с надписью «Устно», «Работай сам».
В первый кармашек кладутся карточки на которых записаны примеры для устного счета, в другой кармашек – примеры для самостоятельной работы на уроке.
Детям очень нравится игра «В полет на воздушном шаре». Изображается воздушный шар, в нем герои из детских книг. Внизу прикреплен почтовый ящик – кармашек с прорезью. На уроке за отличный ответ ученик получает билет – карточку на обратной стороне которой пишет свою фамилию и на перемене опускает в почтовый ящик. Полет может длиться несколько дней, а когда будет окончен, учитель вместе с учащимися вскрывает почтовый ящик, подводит итоги и объявляет победителя. В качестве поощрения победитель может составить создания для устного счета и даже проводить его.
Ошибки в порядке выполнения арифметических действий и пути их предупреждения.
Для выявления характера ошибок учащихся в определении порядка выполнения действий в выражениях в конце третьей и начале четвертой четверти, когда материал уже хорошо изучен, можно провести самостоятельные работы. Выражения составляются так, чтобы вычисления в них можно было производить как в правильном порядке, так и не в правильном: 60 : 6 · 2 ( правильный); 64 : 16 : 2 (неправильный).
На правильность применения правил порядка выполнения действий значительное влияние оказывает структура выражений и числовой материал.
В структуре выражений играет набор, количество и расположение действий в выражениях, наличие в них скобок. Ошибки состоят в том, что учащиеся выполняют сложение раньше деления, не обращая внимания на порядок записи.
Дети помнят начало формулировки, в которой сложение названо раньше вычитания, а умножение раньше деления, и не обращает внимания на конец правила, подчеркивающий, что эти действия надо выполнять в порядке их записи. Другая причина этих ошибок – ориентировка учащихся не на правило, а на возможность выполнения действий – делают то, что делается.
Так же большую роль играет количество действий. Если учащиеся умеют применять правило порядка выполнения действий в выражениях в два действия, нельзя утверждать, что они могут применить его столь же успешно в выражениях в три – четыре действия. Особенно ярко это проявляется в выражениях со скобками.
Теперь рассмотрим влияние числового материала. Вполне понятно, что если числа в выражении не позволяют производить вычисления в неверной последовательности, то ошибки встречаются редко. Если числовой материал позволяет в одном и том же выражении использовать разный порядок выполнения действий, то в работах встречаются все возможные варианты.
Можно использовать следующие упражнения для формирования умений пользоваться правилами порядка выполнения действий, предполагающие постепенные усложнения деятельности учащихся.
б) Выберите выражения, значения которых равны 80 : 20 + 20 · 2; 84 – 12 + 48 : 6; 95 – 10 + 5; 5 + 90 : 6 · 5.
Приведенные упражнения могут
быть использованы как на
Работа по – новому.
Задания, подобранные в этой статье, помогают учителю выстроить ход урока, помогают повторить изученный ранее материал, который необходим для усвоения нового, и при этом каждое задание требует от учащихся активной мыслительной деятельности.
Возьмем тему «Порядок выполнения действий в выражениях». Ориентируясь на материалы по математике для второго класса. Первый урок проходит так.
Сначала детям предлагаются различные выражения и им необходимо определить количество действий в них, наличие или отсутствие скобок, а так же те действия, которые необходимо выполнить в данных выражениях: 72 – ( 9- 3) – 6; 72 – 9 – 3 – 6 + 12; 72 – 9 – 3 – ( 6+ 12).
Дети сравнивают первое и второе выражения, отмечают, что в первом есть действия (его нужно выполнить первым), в первом выражении нужно выполнить три действия, а во втором – 4. Некоторые отмечают, что во втором выражении добавляется число 12. Второе выражение похоже на третье, только в третьем есть скобки.
Дети говорят, что в данных выражениях отсутствуют такие действия, как умножение и деление.
А что можно сказать о таких выражениях? 72 : 9 · 3 : 6 : 2; 72 : 9 · 3: ( 6 : 2 ) · 7; 72 : 9 · 3 : 6: 2 · 7.
Рассматриваются правила выполнения действий в выражениях. Подчеркивают слова: по порядку слева на право, сложение или вычитание. Обращают внимание на слово или. Обсуждается, что оно означает. Делают вывод: если в выражении слева идет первым сложение, то выполняем сложение, а если вычитание, то выполняем вычитание.
Для закрепления правил, выполняют задания. По какому признаку записаны выражения в каждом столбике?
29 – 8 + 24 72 : 9 · 3
32 + 9 – 7 + 14 48 : 6 · 7 : 8
64 – 7 + 16 – 8 27 : 3 · 2 : 6 · 9
Только после этого ставится вычислительная задача.
На доске записывают выражение 68 – 7 · 8 + 63 : 9. Дети расставляют порядок действий: 68 – 7 · 8 + 63 : 9. Вычисления выполняют устно. Они решают первое действие 7 · 8 = 56. Учитель берет карточку с числом 56 и закрывает ею выражение 7 · 8, получается запись: 68 – 56 + 63 : 9. И так пока не получится запись: 12 + 7.
Следующее задание: по какому признаку можно разбить выражение на три группы: 81 – 29 + 27; 400 + 200 + 30 – 100; 27 : 3 · 2: 6 · 9; 400 + 200 + 300 – 100: 48 : 6 · 7 : 8; 54 + 6 · 3 – 72 : 8; 72 : 9 · 3; 84 – 9 · 8.
Задание третье. Можно ли утверждать, что значения выражений в каждом столбике одинаковы? 56 : 8 54 : 9
После того как учащиеся научатся соотносить то или иное выражение с соответствующим правилам, предлагают такие задания: подумайте, какие знаки действий можно поставить вместо звездочек: o * o * o.
Дети спрашивают «А какой
порядок действий?» Учитель
+ -
· :
: · и т. д.
Далее детям предлагается выполнить работу самостоятельно. Они придумывают различные примеры такого типа.
Затем схемы усложняются: добавляются числа, скобки, изменяется порядок действий. Особенности этих заданий состоит в том, что они активизируют творческую активность самого учителя.
Живые уравнения.
Нужны ли уравнения маленьким детям? Легко ли понять пример, когда ответ прячется за таинственным «х», который и прочесть-то не все могут правильно, то ли «икс», то ли «ха». Решение задач с помощью уравнений таинственно и интересно, а сокрытие тайн для любознательного человека вредно. Поэтому знакомство с уравнениями надо начинать с первого класса. И провести его можно следующим образом.
Начнем с фигурок, которые дети умеют складывать и строить из них. На доске нарисованы две фигуры. Что получится при их сложение? o + ∆ =
Теперь разберем дом. Можно снять крышу и останется стена, а можно убрать стену и останется крыша. Если от целого отнять часть, то получится другая его часть Ц – Ч 1 = Ч 2. Зная это, ребенок может теперь сам определить неизвестную часть, имея целое и известную часть. Это уже уравнение. В нем появляется мистер Икс. – х =
Что же случилось с карандашом? Что спрятал мистер Икс? Ну, конечно, у него сломался грифель. х = .
Когда работают с уравнением, то пишут три строчки. В каждой из них обязательно есть х и один знак равенства.
Строчка 1 – уравнение; в нем х спрятался.
Строчка 2 – решение уравнения; х в одной стороне равенства, а остальное – в другой.
Строчка 3 – корень уравнения; в нем открывается всем, что спрятал х.
Решим такое уравнение:
- х =
Что же осталось, если у моркови отрезали зеленый хвостик? Решение:
х = -
х =
Здесь два места, в которых х слева от знака равенства в одиночестве. Нижняя часть явно показывает, что корень моркови это и есть корень уравнения. Верхняя-
Подробно рассказывает, как мы действуем, чтобы найти корень, то есть решаем уравнение: показываем, как из целого (моркови) и известной части (хвостика) узнаем неизвестную часть ( корень). Ц – Ч изв.= Ч н
Информация о работе Методика изучения элементов алгебры и математической логики