Автор работы: Пользователь скрыл имя, 24 Апреля 2013 в 07:08, контрольная работа
Научная мысль и реалии бытия подтверждают тот факт, что время и пространство существуют не сами по себе в отрыве от материи, а находятся в такой универсальной взаимосвязи, в которой они теряют самостоятельность и выступают как стороны единого и многообразного целого.
Всякий материальный процесс развивается в одном направлении – от прошлого к будущему, свидетельствуя о связи движущейся материи со временем и необратимости последнего.
Поэтому время всегда выступало и выступает и как условие производства, и как специфический его ресурс, имеющий определенную «цену».
1.Фактор времени………………………………………………...…3
2. Многовековая практика финансовых расчетов……………4
3. Основы финансовых вычислений………………………………5
4. Методы наращения и дисконтирования по простым и сложным процентам………………………………………….……7
5.Элементарные финансовые расчеты………………….……17
6. Выводы………………………………………………………..….29
7. Список использованной литературы………………….…..31
, (11)
где 1 / (1 – d)^n – множитель наращения сложных антисипативных процентов.
Однако практическое применение такого способа наращения процентов весьма ограничено, и он относится скорее к разряду финансовой экзотики.
Как уже отмечалось, наиболее широко сложные проценты применяются при анализе долгосрочных финансовых операций (n > 1). На большом промежутке времени в полной мере проявляется эффект реинвестирования, начисления “процентов на проценты”. В связи с этим вопрос измерения длительности операции и продолжительности года в днях в случае сложных процентов стоит менее остро. Как правило, неполное количество лет выражают дробным числом через количество месяцев (3/12 или 7/12), не вдаваясь в более точные подсчеты дней. Поэтому в формуле начисления сложных процентов число лет практически всегда обозначается буквой n, а не выражением t/K, как это принято для простых процентов. Наиболее щепетильные кредиторы, принимая во внимание большую эффективность простых процентов на коротких отрезках времени, используют смешанный порядок начисления процентов в случае, когда срок операции (ссуды) не равен целому числу лет: сложные проценты начисляются на период, измеренный целыми годами, а проценты за дробную часть срока начисляются по простой процентной ставке.
, (12)
где a – число полных лет в составе продолжительности операции,
t – число дней в отрезке времени, приходящемся на неполный год,
K –временная база.
В этом случае вновь возникает необходимость выполнения календарных вычислений по рассмотренным выше правилам.
Например, ссуда в 3 млн. рублей выдается 1 января 1997 года по 30 сентября 1999 года под 28% годовых (процентная ставка). В случае начисления сложных процентов за весь срок пользования деньгами наращенная сумма составит:
S = 3 * (1 + 0,28)^(2 + 9/12) = 5,915 млн. рублей
Если же использовать смешанный способ (например, коммерческие проценты с точным числом дней), то получим:
S = 3 * (1 + 0,28)^2 * (1 + 272 / 360 * 0,28) = 6 млн. рублей
Таким образом, щепетильность кредитора в данном случае оказалась вовсе не излишней и была вознаграждена дополнительным доходом в сумме 85 тыс. рублей.
Важной
особенностью сложных процентов
является зависимость конечного
результата от количества начислений
в течение года. Здесь опять
сказывается влияние
Например, если начислять 20% годовых 1 раз в год, то первоначальная сумма в 1 тыс. рублей возрастет к концу года до 1,2 тыс. рублей (1 * (1+ 0,2)). Если же начислять по 10% каждые полгода, то будущая стоимость составит 1,21 тыс. рублей (1 * (1 + 0,1) * (1 + 0,1)), при поквартальном начислении по 5% она возрастет до 1,216 тыс. рублей. По мере увеличения числа начислений (m) и продолжительности операции эта разница будет очень сильно увеличиваться. Если разделить сумму начисленных процентов при ежеквартальном наращении на первоначальную сумму, то получится 21,6% (0,216 / 1 * 100), а не 20%. Следовательно, сложная ставка 20% при однократном наращении и 20% (четыре раза по 5%) при поквартальном наращении приводят к различным результатам, то есть они не являются эквивалентными. Цифра 20% отражает уже не действительную (эффективную), а номинальную ставку. Эффективной процентной ставкой является значение 21,6%. В финансовых расчетах номинальную сложную процентную ставку принято обозначать буквой j. Формула наращения по сложным процентам при начислении их m раз в году имеет вид:
, (13)
Например, ссуда размером 5 млн. рублей выдана на 2 года по номинальной сложной процентной ставке 35% годовых с начислением процентов 2 раза в год. Будущая сумма к концу срока ссуды составит:
S = 5 * (1 + 0,35 / 2)^(2 * 2) = 9,531 млн. рублей.
При однократном начислении ее величина составила бы лишь 9,113 млн. рублей (5 * (1 + 0,35)^2; зато при ежемесячном начислении возвращать пришлось бы уже 9,968 млн. рублей (5 * 1 + (0,35 / 12)^(12 * 2)).
При начислении антисипативных сложных процентов, номинальная учетная ставка обозначается буквой f, а формула наращения принимает вид:
(14)
Выражение 1 / (1 – f / m)^mn множитель наращения по номинальной учетной ставке.
Дисконтирование по сложным процентам также может выполняться двумя способами – математическое дисконтирование и банковский учет. Последний менее выгоден для кредитора, чем учет по простой учетной ставке, поэтому используется крайне редко. В случае однократного начисления процентов его формула имеет вид:
, (15)
где (1 –d)n – дисконтный множитель банковского учета по сложной учетной ставке.
при m > 1 получаем
, (16)
где f – номинальная сложная учетная ставка,
(1 – f / m)mn – дисконтный множитель банковского учета по сложной номинальной учетной ставке.
Значительно более широкое распространение имеет математическое дисконтирование по сложной процентной ставке i. Для m = 1 получаем
, (17)
где 1 / (1 + i)n – дисконтный множитель математического дисконтирования по сложной процентной ставке.
При неоднократном начислении процентов в течение года формула математического дисконтирования принимает вид:
, (18)
где j –номинальная сложная процентная ставка,
1 / (1 + j / m)mn – дисконтный множитель математического дисконтирования по сложной номинальной процентной ставке.
Например, требуется определить современную стоимость платежа в размере 3 млн. рублей, который должен поступить через 1,5 года, процентная ставка составляет 40%:
при m = 1 P = 3 / (1 + 0,4)^1,5 = 1,811 млн. рублей
при m = 2 (начисление 1 раз в полугодие) P = (3 / (1 + 0,4 / 2)^(2 * 1,5) = 1,736 млн. рублей
при m = 12 (ежемесячное начисление) P = (3 / (1 + 0,4 / 12)^(12 * 1,5) = 1,663 млн. рублей.
По мере увеличения числа начислений процентов в течение года (m) промежуток времени между двумя смежными начислениями уменьшается – при m = 1 этот промежуток равен 1 году, а при m = 12 – только 1 месяцу. Теоретически можно представить ситуацию, когда начисление сложных процентов производится настолько часто, что общее его число в году стремится к бесконечности, тогда величина промежутка между отдельными начислениями будет приближаться к нулю, то есть начисление станет практически непрерывным. Такая на первый взгляд гипотетическая ситуация имеет важное значение для финансов и при построении сложных аналитических моделей (например при разработке масштабных инвестиционных проектов) часто применяют непрерывные проценты.
Непрерывная процентная ставка (очевидно, что при непрерывном начислении речь может идти только о сложных процентах) обозначается буквой δ (читается “дельта”), часто этот показатель называют “сила роста”. Формула наращения по непрерывной процентной ставке имеет вид:
, (19)
где e – основание натурального логарифма (≈2,71828...),
edn – множитель наращения непрерывных процентов.
Например, чему будет равна через 3 года сумма 250 тыс. рублей, если сегодня положить ее на банковский депозит под 15% годовых, начисляемых непрерывно?
S = 250 * e^(0,15 * 3) = 392,1 тыс. рублей.
Для непрерывных процентов не существует различий между процентной, и учетной ставками – сила роста является универсальным показателем. Однако наряду с постоянной силой роста может использоваться переменная процентная ставка, величина которой меняется по заданному закону (математической функции). В этом случае можно строить очень мощные имитационные модели, однако математический аппарат расчета таких моделей достаточно сложен и не рассматривается в настоящем пособии, так же как и начисление процентов по переменной непрерывной процентной ставке.
Непрерывное
дисконтирование с
, (20)
где 1 / edn – дисконтный множитель дисконтирования по силе роста.
Например, в результате осуществления инвестиционного проекта планируется получить через 2 года доход в размере 15 млн. рублей. Чему будет равна приведенная стоимость этих денег в сегодняшних условиях, если сила роста составляет 22% годовых?
P = 15 / e^(0,22 * 2) = 9,66 млн. рублей.
5. Элементарные финансовые
Сфера использования финансовых вычислений значительно шире, чем расчет параметров банковских кредитов. Хорошее владение основами финансовой математики позволяет сравнивать между собой эффективность отдельных операций и обосновывать наиболее оптимальные управленческие решения. Для анализа финансовых показателей в настоящее время применятся самые изощренные математические методы.
Наличие докторской степени по математике
пока не является обязательным требованием
для финансового менеджера
Большую
помощь финансисту оказывают специальные
компьютерные программы, а также
финансовые калькуляторы, позволяющие
автоматизировать вычисление многих показателей.
Широкое распространение
В условиях нестабильной экономики банки и другие кредиторы с целью снижения своего процентного риска могут устанавливать переменные ставки процентов для различных финансовых операций.
Например, по ссуде в размере 2 млн. рублей общей продолжительностью 120 дней в течение первых двух месяцев будут начисляться 30% годовых, а начиная с 61 дня, ежемесячно простая процентная ставка будет увеличиваться на 5% (обыкновенные проценты). Фактически, ссуда разбивается на несколько составляющих, по каждой из которых установлены свои условия. Необходимо найти наращенные суммы по каждой из составляющих, а затем сложить их. Вспомним, что аналогом процентной ставки в статистике является показатель “темп прироста”. При начислении простых процентов следует говорить о базисных темпах прироста, т.к. первоначальная сумма P остается неизменной. Данная задача в статистических терминах может быть интерпретирована как сложение базисных темпов прироста с последующим умножением на первоначальную сумму займа. Общая формула расчета будет иметь следующий вид:
, (1)
где N общее число периодов, в течение которых проценты начисляются по неизменной ставке. Подставив в это выражение условия нашего примера, получим:
S = 2 * (1 + (60 / 360 * 0,3) + (30 / 360 * 0,35) + (30 /360 * 0,4)) = 2,225 млн. рублей
Соответственно для сложных процентов, речь пойдет уже не о базисных, а о цепных темпах прироста, которые должны не складываться, а перемножаться:
(2)
Подставив условия примера, получим:
S = 2 * (1 + 0,3)60/360 * (1 + 0,35)30/360 * (1 + 0,4)30/360 = 2,203 млн. рублей
Данную
задачу можно решить несколько иным
путем – рассчитав сначала
средние процентные ставки. Расчет
средних процентных ставок (или расчет
средних доходностей) вообще очень
распространенная в финансах операция.
Для ее выполнения полезно опять
вспомнить о математико-
, (3)
где N – общее число периодов, в течение которых процентная ставка оставалась неизменной
Сложные
проценты растут в геометрической прогрессии,
поэтому средняя сложная
(4)
Снова используем данные нашего примера. В случае начисления простых процентов получим:
īпр = ((0,3 * 60) + (0,35 * 30) + (0,4 * 30)) / 120 = 0,3375 = 33,75%
S = 2 * (1 + 0,3375 * 120 / 360) = 2,225 млн. рублей
То есть средняя процентная ставка составила 33,75% и начисление процентов по этой ставке за весь срок ссуды дает такой же результат, как и тот, что был получен по формуле (1). Для сложных процентов выражение примет вид:
īсл = ((1 + 0,3)60 * (1 + 0,35)30 * (1 + 0,4)30)1/120 – 1 = 0,33686 = 33,69%
S = 2 * (1 + 0,33686)120/360 = 2,203 млн. рублей
Начисление процентов по средней процентной ставке 33,69% также дает результат, эквивалентный тому, что был получен по формуле (2).
Понимание различий механизмов наращения простых и сложных процентов помогает избегать довольно распространенных ошибок. Например, следует помнить, что такой процесс как инфляция, развивается в геометрической, а не в арифметической прогрессии, то есть к нему должны применяться правила начисления сложных, а не простых процентов. Темпы прироста цен в этом случае являются цепными, а не базисными, т.к. в каждом последующем месяце рост цен относится к предыдущему месяцу, а не к началу года или какой-либо иной неизменной базе. Например, если инфляция в январе составила 5%, в феврале 4%, а в марте 9%, то общая инфляция за квартал будет равна не 18% (сумма месячных показателей), а 19,03% (1,05 * 1,04 * 1,09 – 1). Среднемесячный уровень инфляции за этот квартал составит (1,05 * 1,04 * 1,09)1/3 - 1 = 5,98%. С другой стороны, если объявляется, что среднемесячная инфляция за год составила 5,98%, то это не значит, что общая инфляция за год в 12 раз больше (71,76%). На самом деле годовая инфляция в этом случае составит свыше 100,7% (1,059812 - 1).
Информация о работе Учет фактора времени в финансовых расчетах