Корреляционно-регрессионный анализ рекламы

Автор работы: Пользователь скрыл имя, 17 Сентября 2014 в 14:40, курсовая работа

Краткое описание

Цель данной работы – проанализировать методику корреляционно-регрессионного анализа рекламы.
Задачи работы:
- рассмотреть сущность корреляционно-регрессионного анализа;
- изучить методику корреляционно-регрессионного анализа.
В теоретической части рассмотрены такие вопросы, как сущность корреляционно-регрессионного анализа, особенности корреляционно-регрессионного анализа.

Вложенные файлы: 1 файл

1745 9 вариант.doc

— 936.00 Кб (Скачать файл)

Содержание

 

 

ВВЕДЕНИЕ

 

Исследование объективно существующих связей между явлениями – важнейшая задача общей теории статистики. В процессе статистического исследования зависимостей вскрываются причинно-следственные отношения между явлениями, что позволяет выявлять факторы (признаки), оказывающие существенное влияние на вариацию изучаемых явлений и процессов. Причинно-следственные отношения – это связь явлений и процессов, когда изменение одного и них – причины – ведет к изменению другого – следствия.

    Причина – это  совокупность условий, обстоятельств, действие которых приводит к  появлению следствия. Если между  явлениями действительно существуют  причинно-следственные отношения, то  эти условия должны обязательно  реализовываться вместе с действием причин. Причинные связи носят всеобщий и многообразный характер, и для обнаружения причинно-следственных связей необходимо отбирать отдельные явления и изучать их изолированно.

    Особое значение  при исследовании причинно-следственных связей имеет выявление временной последовательности: причина всегда должна предшествовать следствию, однако не каждое предшествующее событие следует считать причиной, а последующее следствием.

    В реальной  социально-экономической действительности причину и следствие необходимо рассматривать как смежные явления, появление которых обусловлено комплексом сопутствующих более простых причин и следствий. Между сложными группами причин и следствий возможны многозначительные связи, когда за одной причиной будет следовать то одно, то другое действие или одно действие имеет несколько различных причин. Чтобы установить однозначную причинную связь между явлениями или предсказать возможные следствия конкретной причины, необходима полная абстракция от всех прочих явлений в исследуемой временной или пространственной среде. Теоретически такая абстракция воспроизводится. Приемы абстракции часто применяются при изучении взаимосвязей между двумя признаками (парной корреляции). Но чем сложнее изучаемые явления, тем труднее выявить причинно-следственные связи между ними. Взаимное переплетение различных внутренних и внешних факторов неизбежно приводит к некоторым ошибкам в определении причины и следствия.

Социально-экономические явления представляют собой результат одновременного воздействия большого числа причин. Следовательно, при изучении этих явлений необходимо выявлять главные, основный причины, абстрагируясь от второстепенных.

Цель данной работы – проанализировать методику корреляционно-регрессионного анализа рекламы.

Задачи работы:

- рассмотреть сущность  корреляционно-регрессионного анализа;

- изучить методику корреляционно-регрессионного  анализа.

В теоретической части рассмотрены такие вопросы, как сущность корреляционно-регрессионного анализа, особенности корреляционно-регрессионного анализа.

В аналитической части на практике осуществлен корреляционно-регрессионный анализ на примере деятельности банков.

Расчеты произведены в программе MS Excel.

 

 

 

 

 

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

 

1. Корреляционно-регрессионный анализ рекламы

 

Корреляционно-регрессионный анализ рекламы состоит из таких основных этапов:

— построение системы факторов, которые существенно влияют на расходы по рекламе;

— разработка модели, которая отображает общее содержание взаимосвязей, которые изучаются, и количественная оценка ее параметров;

— проверка качества модели рекламных расходов;

— оценка влияния отдельных факторов на расходы по рекламе.

На первом этапе осуществляется отбор факторов, которые существенно влияют на расходы по рекламе.

Он проводится прежде всего исходя из содержательного анализа.

Для получения надежных оценок в модель не следует включать много факторов, их количество не должно быть большее одной трети объема данных, которые анализируются.

Но поскольку на начальному этапе разработки модели у исследователя нет однозначного ответа на вопрос относительно набора существенных факторов, то при использовании ЭВМ отбор факторов обычно осуществляется непосредственно в процессе создания модели методом последовательной регрессии.

Суть этого метода состоит в последовательном включении дополнительных факторов в модель и оценке влияния добавленного фактора.

Используется также подход, по которому на факторы, включаемые в предшествующий состав модели, не накладывается особых ограничений и лишь на следующих стадиях проводится их оценивание и отбор.

Второй этап начинается с разработки модели, которая отображает общее содержание взаимосвязей, которые изучаются.

Регрессионная модель — это уравнения (или система уравнений), что показывает, какие факторы, по мнению исследователя, должны быть привлечены к взаимосвязям, которые подлежат анализу.

Регрессионное уравнение дает также представление о форме связи.

 

2. Сущность корреляционно-регрессионного метода

2.1. Использование аналитических группировок  для расчета показателей тесноты взаимосвязей, коэффициента детерминации и эмпирическое корреляционное отношение

 

Аналитическая группировка позволяет выявить наличие или отсутствие зависимости. Вместе с тем в рамках этого метода не удается аналитически описать эту зависимость, а также не удается выяснить "тесноту" или "существенность" этой зависимости.

Аналитическая группировка может быть равноинтервальной и неравноинтервальной. Сначала выполняется равноинтервальная, а в случае необходимости, т. е. для более наглядного представления зависимости, и неравноинтервальная. В случае положительного результата группировки выявленная зависимость должна быть представлена наиболее наглядно. В примере полученная равноинтервальная группировка не потребовала уточнения, т. е. отсутствовала необходимость в построении неравноинтервальной группировки.

Метод аналитических группировок применяется для выделения особенностей и дифференцированного регулирования по показателям объема и структуры производства, его концентрации, размещения, эффективности и др.

Используя аналитические группировки, прежде всего определяют факторные и результативные признаки изучаемых явлений. Факторные - это признаки, оказывающие влияние на другие, связанные с ними признаки. Результативные -признаки, которые изменяются под влиянием факторных. Чтобы исследовать взаимосвязь между отобранными признаками с помощью метода аналитических группировок, необходимо произвести группировку единиц совокупности по факторному признаку и по каждой группе вычислить среднее значение результативного признака, вариация которого от группы к группе под влиянием группировочного признака будет указывать на наличие или отсутствие взаимосвязи. Группировка позволяет получить такие результаты, по которым можно выявить состав совокупности, характерные черты и свойства типичных явлений, обнаружить закономерности и взаимосвязи.

Нужно выбрать:

1) факторный показатель является  количественным признаком, а результативный  показатель - качественный признак (например, стаж работы в фирме  и квалификация работников (тарифный разряд));

2) основанием группировки является  качественный показатель, а результативный  показатель - количественный признак (например, тарифный разряд - величина  заработной платы);

3) показатель-фактор и показатель-результат  являются качественными признаками (например, квалификация работников и уровень их образования);

4) факторный и результативный  показатели являются количественными  признаками (например, стаж работы  и уровень оплаты труда).

При сравнении функциональных и корреляционных зависимостей следует иметь в виду, что при наличии функциональной зависимости между признаками можно, зная величину факторного признака, точно определить величину результативного признака. При наличии же корреляционной зависимости устанавливается лишь тенденция изменения результативного признака при изменении величины факторного признака. В отличие от жесткости однозначно функциональной связи корреляционные связи характеризуются множеством причин и следствий и устанавливаются лишь их тенденции.

Необходимо отметить, что экономической теории принадлежит решающее слово в обосновании связей между теми или иными признаками. При этом теоретический анализ должен показать, какие факторы влияют на исследуемый признак или же влияние каких факторов должно быть проверено. Статистическое выражение связи между явлениями может показать, что изменения одного из сопоставляемых признаков сопровождаются изменениями другого. Следовательно, нужно искать объяснение этим изменениям в их содержательном анализе. С помощью статистических методов изучения зависимостей можно установить, как проявляется теоретически возможная связь в данных конкретных условиях. Статистика не только отвечает на вопрос о реальном существовании намеченной теоретическим анализом связи, но и дает количественную характеристику этой зависимости. Зная характер зависимости одного явления от других, можно объяснить причины и размер изменений в явлении, а также планировать необходимые мероприятия для дальнейшего его изменения.

Для того, чтобы результаты корреляционного анализа нашли практическое применение и дали желаемый результат, должны выполняться определенные требования в отношении отбора объекта исследования и признаков-факторов. Одним из важнейших условий правильного применения методов корреляционного анализа является требование однородности тех единиц, которые подвергаются изучению методами корреляционного анализа. Например, при корреляционном анализе зависимостей тех или иных технико-экономических показателей работы предприятий от определенных факторов должны быть отобраны предприятия, выпускающие однотипную продукцию, имеющие одинаковый характер технологического процесса и тип используемого оборудования, для предприятий добывающей промышленности определенную роль играет и географическое размещение предприятий.

При выполнении указанных общих требований далее необходима количественная оценка однородности исследуемой совокупности по комплексу признаков. Одним из возможных вариантов такой оценки является расчет относительных показателен вариации. Традиционно широкое распространение для этих целей получил коэффициент вариации. Несколько реже применяется отношение размаха вариации к среднеквадратическому отклонению. Вывод о неоднородности исследуемой совокупности по тому или иному признаку требует проверки гипотезы о принадлежности "выделяющихся" (аномальных) значений признака исследуемой генеральной совокупности.

Другим важным требованием, обеспечивающим надежность выводов корреляционного анализа, является требование достаточного числа наблюдений. Как уже указывалось, влияние существенных причин может быть затушевано действием случайных факторов, "взаимопогашение" влияния которых на результативный показатель в известной мере происходит при выведении средней результативного показателя для массы случаев.

Определенные требования существуют и в отношении факторов, вводимых в исследование. Все множество факторов, оказывающих влияние на величину результативного показателя, к действительности не может быть введено в рассмотрение, да практически в этом и нет необходимости, так как их роль и значение в формировании величины результативного показателя могут иметь существенные различия. Поэтому при ограничении числа факторов, включаемых в изучение, наряду с качественным анализом целесообразно использовать и определенные количественные оценки, позволяющие конкретно охарактеризовать влияние факторов на результативный показатель (к оценкам можно отнести парные коэффициенты корреляции, ранговые коэффициенты при экспертной оценке влияния факторов и др.). Включаемые в исследование факторы должны быть независимыми друг от друга, так как наличие тесной связи между ними свидетельствует о том, что они характеризуют одни и те же стороны изучаемого явления и в значительной мере дублируют друг друга.

Для характеристики тесноты корреляционной связи между признаками в аналитических группировках межгрупповую дисперсию сопоставляют с общей.

Это сопоставление называйся корреляционным отношением и обозначается:

η2=δ2/σ2.

Оно характеризует долю вариации результативного признака, вызванной действием факторного признака, положенного в основание группировки. Корреляционное отношение по своему абсолютному значению колеблется в пределах от 0 до 1. Чем ближе корреляционное отношение к 1, тем большее влияние оказывает факторный признак на результативный. Если же факторный признак не влияет на результативный, то вариация, обусловленная им, будет равна нулю (δ2= 0) и корреляционное отношение также будет равно нулю (η2= 0), что говорит о полном отсутствии связи. И наоборот, если результативный признак изменяется только под воздействием одного факторного признака, то вариация, обусловленная этим признаком, будет равна общей вариации (η2=η2) и корреляционное отношение будет равно единице (η2= 1), что говорит о существовании полной связи.

Дисперсионный анализ позволяет не только определить роль случайной и систематической вариаций в общей вариации, но и оценить достоверность вариации, обнаруженной методом аналитических группировок. Определение достоверности вариации дает возможность с заданной степенью вероятности установить, вызвана ли межгрупповая вариация признаком, положенным в основание группировки, или она является результатом действия случайных причин. Для оценки существенности корреляционного отношения пользуются критическими значениями корреляционного отношения η2 при разных уровнях вероятности или значимости α.

Информация о работе Корреляционно-регрессионный анализ рекламы