Автор работы: Пользователь скрыл имя, 04 Января 2014 в 00:47, курсовая работа
Теория унитарных представлений групп восходит к XIX веку и связана с именами Г.Фробениуса, И.Шура, В.Бернсайда, Ф.Э. Молина и др. В связи с предложениями к квантовой физике теория унитарных представлений топологических групп, групп Ли, С*-алгебр была разработана И.М.Гельфандом, М.А. Наймарком, И.Сигалом, Ж.Диксмье, А.А. Кирилловым и др. в 60-70-х годах XX века. В дальнейшем интенсивно развивается теория представлений *-алгебр, заданных образующими и соотношениями.
ВВЕДЕНИЕ……………………………………………………………………………..4
Глава I. Основные понятия и определения…………………………………….6
§ 1. * - алгебры……………………………………………………………………...6
1.1. Определение * - алгебры……………………………………………………….6
1.2. Примеры…………………………………………………………………………7
1.3. Алгебры с единицей…………………………………………………………….7
1.4. Простейшие свойства * - алгебр……………………………………………….9
1.5. Гомоморфизм и изоморфизм алгебр…………………………………………11
§ 2. Представления ……………………………………………………………….13
2.1. Определение и простейшие свойства представлений……………………….13
2.2. Прямая сумма представлений ………………………………………………..15
2.3. Неприводимые представления………………………………………………..16
2.4. Конечномерные представления……………………………………………….19
2.5. Интегрирование и дезинтегрирование представлений ……………………..20
§ 3. Тензорные произведения……………………………………………………26
3.1. Тензорные произведения пространств……………………………………….26
3.2. Тензорные произведения операторов………………………………………..28
Глава II. Задача о двух ортопроекторах………………………………………..31
§ 1. Два ортопроектора в унитарном пространстве…………………………..31
1.1. Постановка задачи……………………………………………………………..31
1.2. Одномерные *-представления *-алгебры P2 ……………………………….31
1.3. Двумерные *-представления *-алгебры P2 ……………………………….32
1.4. n-мерные *-представления *-алгебры P2 …………………………………35
1.5. Спектральная теорема…………………………………………………………37
§ 2. Два ортопроектора в сепарабельном гильбертовом пространстве……39
2.1. Неприводимые *-представления *-алгебры P2 …………………………...39
2.2. Спектральная теорема…………………………………………………………41
Глава III. Спектр суммы двух ортопроекторов ……………………………...45
§ 1. Спектр суммы двух ортопроекторов в унитарном пространстве……...45
1.1. Спектр ортопроектора в гильбертовом пространстве……………………….45
1.2. Постановка задачи……………………………………………………………..45
1.3. Спектр в одномерном пространстве………………………………………….45
1.4. Спектр в двумерном пространстве……………………………………….…..46
1.5. Спектр в n-мерном пространстве……………………………………………..47
1.6. Линейная комбинация ортопроекторов………………………………………49
§ 2. Спектр суммы двух ортопроекторов в сепарабельном
гильбертовом пространстве …………………………………………………….52
2.1. Спектр оператора А = Р1 +Р2 …………………………………………………52
2.2. Спектр линейной комбинации А = аР1 + bР2 (0<а<b) ……………………..53
Заключение………………………………………………………………………..55
Литература ………………………………………………………………………..56
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ
ТАВРИЧЕСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ
им. В.И. ВЕРНАДСКОГО
ФАКУЛЬТЕТ МАТЕМАТИКИ И ИНФОРМАТИКИ
КАФЕДРА АЛГЕБРЫ И ФУНКЦИОНАЛЬНОГО АНАЛИЗА
*-АЛГЕБРЫ И ИХ ПРИМЕНЕНИЕ
Дипломная работа специалиста
студент 5 курса специальности математика
______________________________
НАУЧНЫЕ РУКОВОДИТЕЛИ:
ассистент каф. алгебры и функционального анализа
______________________________
профессор, доктор физико-математических наук
______________________________
РЕШЕНИЕ О ДОПУСКЕ К ЗАЩИТЕ:
зав. кафедрой, профессор, д.ф.м.н.
______________________________
СИМФЕРОПОЛЬ
2003
СОДЕРЖАНИЕ
ВВЕДЕНИЕ…………………………………………………………
Глава I. Основные понятия и определения…………………………………….6
§ 1. * - алгебры……………………………………………………………
1.1. Определение * - алгебры……………………………………………………….6
1.2. Примеры……………………………………………………………
1.3. Алгебры с единицей………………………………
1.4. Простейшие свойства * - алгебр……………………………………………….9
1.5. Гомоморфизм и изоморфизм алгебр…………………………………………11
§ 2. Представления …………………………………………
2.1. Определение и простейшие
свойства представлений……………………
2.2. Прямая сумма представлений ………………………………………………..15
2.3. Неприводимые представления…………
2.4. Конечномерные представления………
2.5. Интегрирование и
§ 3. Тензорные произведения……………………
3.1. Тензорные произведения пространств……………………………………….26
3.2. Тензорные произведения операторов………………………………………..28
Глава II. Задача о двух ортопроекторах……………………………………….
§ 1. Два ортопроектора
в унитарном пространстве………………
1.1. Постановка задачи…………………………………
1.2. Одномерные *-представления *-алгебры P2 ……………………………….31
1.3. Двумерные *-представления *-алгебры P2 ……………………………….32
1.4. n-мерные *-представления *-алгебры P2 …………………………………35
1.5. Спектральная теорема…………………………
§ 2. Два ортопроектора в сепарабельном гильбертовом пространстве……39
2.1. Неприводимые *-представления *-алгебры P2 …………………………...39
2.2. Спектральная теорема…………………………
Глава III. Спектр суммы двух ортопроекторов ……………………………...45
§ 1. Спектр суммы двух ортопроекторов
в унитарном пространстве……...
1.1. Спектр ортопроектора
в гильбертовом пространстве………
1.2. Постановка задачи…………………………………
1.3. Спектр в одномерном
пространстве………………………………………….
1.4. Спектр в двумерном
пространстве……………………………………….….
1.5. Спектр в n-мерном пространстве…………………………………………….
1.6. Линейная комбинация
ортопроекторов………………………………………
§ 2. Спектр суммы двух ортопроекторов в сепарабельном
гильбертовом пространстве …………………………………………………….52
2.1. Спектр оператора А = Р1 +Р2 …………………………………………………52
2.2. Спектр линейной комбинации А = аР1 + bР2 (0<а<b) ……………………..53
Заключение……………………………………………………
Литература …………………………………………………
ВВЕДЕНИЕ
Пусть Н - гильбертово пространство, L(Н) - множество непрерывных линейных операторов в Н. Рассмотрим подмножество А в L(Н), сохраняющееся при сложении, умножении, умножении на скаляры и сопряжении. Тогда А - операторная *-алгебра. Если дана абстрактная *-алгебра А, то одна из основных задач теории линейных представлений (*-гомоморфизмов А в L(Н)) - перечислить все ее неприводимые представления (с точностью до эквивалентности).
Теория унитарных
Дипломная работа посвящена развитию теории представлений (конечномерных и бесконечномерных) *-алгебр, порожденных двумя проекторами.
Глава I в краткой форме содержит необходимые для дальнейшего сведения из теории представлений и функционального анализа. В §1 дано определение *-алгебры и приведены простейшие свойства этих алгебр. В §2 излагаются основные свойства представлений, вводятся следующие понятия: неприводимость, эквивалентность, прямая сумма, интегрирование и дезинтегрирование представлений. В §3 определяются тензорные произведения пространств, тензорные произведения операторов и др. (см. [2], [3], [4], [8], [9])
В Главе II изучаются представления *-алгебры P2
P2 = С < p1, p2 | p12 = p1* = p1, p22 = p2* = p2 >,
порожденной двумя самосопряженными идемпотентами, то есть проекторами (см., например, [12]). Найдены все неприводимые *-представления *-алгебры P2, с точностью до эквивалентности., доказаны соответствующие спектральные теоремы.
В §1 рассматриваются только конечномерные *-представления р в унитарном пространстве Н. Описаны все неприводимые и неэквивалентные *-представления *-алгебры P2 . Неприводимые *-представления P2 одномерны и двумерны:
4 одномерных: р0,0(p1) = 0, р0,0(p2) = 0; р0,1(p1) = 0, р0,1(p2) = 1;
р1,0(p1) = 1, р1,0(p2) = 0; р1,1(p1) = 1, р1,1(p2) = 1.
И двумерные: , ф (0, 1).
Доказана спектральная теорема
о разложении пространства Н в
ортогональную сумму
В §2 получены основные результаты работы. Для пары проекторов в сепарабельном гильбертовом пространстве Н приведено описание всех неприводимых представлений, доказана спектральная теорема.
В Главе III спектральная теорема для пары проекторов Р1, Р2, применяется к изучению сумм Р1+Р2, аР1+bР2 (0 < a < b). Получены необходимое и достаточное условие на самосопряженный оператор А для того чтобы А = Р1+Р2 или А = аР1+bР2, 0 < a < b, (этот частный случай задачи Г.Вейля (1912 г.) о спектре суммы пары самосопряженных операторов).
Глава I. Основные понятия и определения
§ 1. - алгебры
1.1. Определение - алгебры.
Определение 1.1. Совокупность А элементов x, y, … называется алгеб-
рой, если:
1) А есть линейное пространство;
2) в А введена операция
умножения (вообще
воряющая следующим условиям:
б (x y) = (б x) y,
x (б y) = б (x y),
(x y) z = x (y z),
(x + y) = xz +xy,
x (y + z) = xy + xz для любых x, y, z А и любых чисел б.
Два элемента x, y алгебры А называются перестановочными, если xy = yx. Алгебра А называется коммутативной, если все ее элементы попарно пере-
становочны.
Определение 1.2. Пусть А - алгебра над полем С комплексных чисел. Инволюцией в А называется такое отображение x ? x* алгебры А в А, что
(i) (x*)* = x;
(ii) (x + y)* = x* + y*;
(iii) (б x)* = x*;
(iv) (x y)* = y*x* для любых x, y С.
Алгебра над С, снабженная инволюцией, называется инволютивной алгеброй или *- алгеброй. Элемент х* называют сопряженным к х. Подмножество А, сохраняющееся при инволюции, называется само-
сопряженным.
Из свойства (i) следует, что инволюция в А необходимо является биекцией А на А.
1.2. Примеры
1) На А = С отображение z ? (комплексное число, сопряженное к z) есть инволюция, превращающая С в коммутативную *- алгебру.
2) Пусть Т - локально компактное пространство, А = С(Т) - алгебра непре-
рывных комплексных функций на Т, стремящихся к нулю на бесконечности (то есть для любого е > 0 множество {tT: |f (t)| е} компактно, f (t) А. Снабжая А отображением f? получаем коммутативную *- алгебру. Если Т сводится к одной точке, то возвращаемся к примеру 1).
3) Пусть Н - гильбертово пространство. А = L(H) - алгебра ограниченных линейных операторов в Н. Зададим инволюцию как переход к сопряженному оператору. Тогда А - *- алгебра.
4) Обозначим через К(Н)
совокупность всех компактных
операторов в гильбертовом
5) Обозначим через W совокупность всех абсолютно сходящихся рядов .
Алгебра W есть *- алгебра, если положить . ()
1.3. Алгебры с единицей
Определение 1.3. Алгебра А называется алгеброй с единицей, если А содержит элемент е, удовлетворяющий условию
ех = хе = х для всех хА (1.1.)
Элемент е называют единицей алгебры А.
Теорема 1.1. Алгебра А не может иметь больше одной единицы.
Доказательство. Действительно, если еґ - также единица в А, то
еґх = хеґ = х, для всех хА (1.2.)
Полагая в (1.1.) х = еґ, а в (1.2.) х = е, получим:
ееґ = еґе = еґ и еґе = ееґ =е, следовательно еґ = е.
Теорема 1.2. Всякую алгебру
А без единицы можно
Доказательство. Искомая алгебра должна содержать все суммы хґ=бе + х, хА; с другой стороны, совокупность всех таких сумм образует алгебру Аґ, в которой основные операции определяются формулами:
в(бе + х) = вбе + вх, (б1е + х1) + (б2е + х2) = (б1 + б2)е + (х1 + х2),
(б1 е + х1)(б2 е+ х2 )=б1 б2 е +б1 х2 +б2 х1 + х1 х2 (1.3.)
Каждый элемент хґ из Аґ представляется единственным образом в виде
хґ = бе + х, хА, так как по
условию А не содержит единицы. Поэтому
Аґ можно реализовать как
Алгебру Аґ можно также реализовать как совокупность всех пар (б, х), хА, в которой основные операции определяются по формулам:
в (б, х) = (вб, вх), (б1, х1) + (б2, х2) = (б1 + б2, х1 + х2),
(б1, х1)(б2, х2) = (б1б2, б1х2 + б2 х1 + х1х2), (1.4.)
аналогично тому, как определяются комплексные числа. Саму алгебру А можно тогда рассматривать как совокупность всех пар (0, х), хА и не делать различия между х и (0, х). Полагая е = (0, х), мы получим:
(б, х) = б(1, 0) + (0, х) = бе + х,
так что вторая реализация алгебры Аґ равносильна первой.
Переход от А к Аґ называется присоединением единицы.
Определение 1.4. Элемент y называется левым обратным элемента х, если xy = e. Элемент z называется правым обратным элемента х, если xz = e.
Если элемент х имеет и левый, и правый обратные, то все левые и правые обратные элемента х совпадают. Действительно, умножая обе части равенства yx = e справа на z, получим
z = (yx)z = y(xz) = ye,
В этом случае говорят, что существует обратный х-1 элемента х.
1.4. Простейшие свойства - алгебр
Определение 1.5. Элемент х *-алгебры А называется эрмитовым или самосопряженным, если х* = х, нормальным, если хх* = х*х. Идемпотентный эрмитов элемент называется проектором. Элемент алгебры называется идемпотентным, если все его (натуральные) степени совпадают.
Каждый эрмитов элемент нормален. Множество эрмитовых элементов есть вещественное векторное подпространство А. Если х и y эрмитовы, то (xy)*= y*x* = yx; следовательно, xy эрмитов, если x и y перестановочны. Для каждого хА элементы хх* и х*х эрмитовы. Но, вообще говоря, эрмитов элемент не всегда представим в этом виде, как показывает пример 1 из пункта 1.2. Действительно, для любого zC , но если z действительно отрицательное число, то его нельзя представить в виде .
Теорема 1.3. Всякий элемент х *-алгебры А можно представить, и притом единственным образом, в виде х = х1 +iх2, где х1, х2 - эрмитовы элементы.
Доказательство. Если такое представление имеет место, то х* = х1 +iх2, следовательно:
, (1.5.)
Таким образом, это представление единственно. Обратно, элементы х1, х2, определенные равенством (1.5.), эрмитовы и х = х1 +iх2.
Эти элементы х1, х2 называются эрмитовыми компонентами элемента х.
Заметим, что хх* = х12 + х22 + i(х2х1 - х1х2),
хх* = х12 + х22 - i(х2х1 - х1х2)
так что х нормален тогда и только тогда, когда х1 и х2 перестановочны.
Так как е*е = е* есть эрмитов элемент, то е* = е , то есть единица эрмитов элемент.
Если А - *-алгебра без единицы, а Аґ - алгебра, полученная из А присоединением единицы, то, положив при хА, мы определим инволюцию в Аґ, удовлетворяющую всем требованиям определения 2. Так что Аґ станет *-алгеброй. Говорят, что Аґ есть *-алгебра, полученная из А присоединением единицы.
Теорема 1.4. Если х-1 существует, то (х*)-1 также существует и