Решение задач линейного программирования симплекс методом

Автор работы: Пользователь скрыл имя, 25 Февраля 2012 в 16:32, курсовая работа

Краткое описание

В последние годы в прикладной математике большое внимание уделяется новому классу задач оптимизации, заключающихся в нахождении в заданной области точек наибольшего или наименьшего значения некоторой функции, зависящей от большого числа переменных. Это так называемые задачи математического программирования, возникающие в самых разнообразных областях человеческой деятельности и прежде всего в экономических исследованиях, в практике планирования и организации производства. Изучение этого круга задач и методов их решения привело к созданию новой научной дисциплины, получившей позднее название линейного программирования. В конце 40-х годов американским математиком Дж. Данцигом был разработан эффективный метод решения данного класса задач – симплекс-метод. К задачам, решаемых этим методом в рамках математического программирования относятся такие типичные экономические задачи как «Определение наилучшего состава смеси»,

Содержание

Содержание:
Введение
Линейное программирование
Симплекс метод
Постановка задачи
Разработка алгоритма
Решение задачи
Программная реализация на языке Delphi
Приложение
Заключение
Список используемой литературы

Вложенные файлы: 1 файл

Решение задач линейного программирования симплекс методом.docx

— 77.18 Кб (Скачать файл)

Федеральное государственное  образовательное учреждение

Среднего профессионального  образования

Барнаульский строительный колледж

Курсовая работа.

По дисциплине: «Математические методы»

На тему: «Решение задач линейного программирования симплекс методом»

 

 

 

 

 

 

 

 

 

 

 

Выполнил: Нунгесер М.В.

Специальность: ПОВТ

Группа: 0881

Преподаватель: Клепикова  Н.Н.

 

Содержание:

Введение

Линейное программирование

Симплекс метод

Постановка задачи

Разработка алгоритма

Решение задачи

Программная реализация на языке Delphi

Приложение

Заключение

Список используемой литературы

 

Введение

В последние годы в прикладной математике большое внимание уделяется  новому классу задач оптимизации, заключающихся  в нахождении в заданной области  точек наибольшего или наименьшего  значения некоторой функции, зависящей  от большого числа переменных. Это  так называемые задачи математического  программирования, возникающие в  самых разнообразных областях человеческой деятельности и прежде всего в  экономических исследованиях, в  практике планирования и организации  производства. Изучение этого круга  задач и методов их решения  привело к созданию новой научной  дисциплины, получившей позднее название линейного программирования. В конце 40-х годов американским математиком  Дж. Данцигом был разработан эффективный метод решения данного класса задач – симплекс-метод. К задачам, решаемых этим методом в рамках математического программирования относятся такие типичные экономические задачи как «Определение наилучшего состава смеси», «Задача об оптимальном плане выпуска продукции», «Оптимизация межотраслевых потоков», « Задача о выборе производственной программы», «Транспортная задача», «Задача размещения», «Модель Неймана расширяющейся экономики» и другие. Решение таких задач дает большие выгоды как народному хозяйству в целом, так и отдельным его отраслям.

Решение задач математического  программирования при помощи симплекс-метода традиционными способами требует  затрат большого количества времени. В  связи с бурным развитием компьютерной техники в последние десятилетия  естественно было ожидать, что вычислительная мощность современных ЭВМ будет  применена для решения указанного круга задач.

Линейное программирование

Линейное программирование - математическая дисциплина, посвящённая  теории и методам решения задач  об экстремумах линейных функций  на множествах n-мерного векторного пространства, задаваемых системами линейных уравнений и неравенств.

Линейное программирование является частным случаем выпуклого  программирования, которое в свою очередь является частным случаем  математического программирования. Одновременно оно - основа нескольких методов решения задач целочисленного и нелинейного программирования. Одним из обобщений линейного программирования является дробно -линейное программирование.

Многие свойства задач  линейного программирования можно  интерпретировать также как свойства многогранников и таким образом  геометрически формулировать и  доказывать их.

Математическая  формулировка задачи линейного программирования

Нужно определить максимум линейной целевой функции (линейной формы)

при условиях


Иногда на xтакже накладывается некоторый набор ограничений в виде равенств, но от них можно избавиться, последовательно выражая одну переменную через другие и подставляя её во всех остальных равенствах и неравенствах (а также в функции f).

Такую задачу называют «основной» или «стандартной» в линейном программировании. Наиболее известным  и широко применяемым на практике для решения общей задачи линейного  программирования (ЛП) является симплекс метод.

Симплекс метод

Симплекс метод - метод  линейного программирования, который  реализует рациональный перебор  базисных допустимых решений, в виде конечного итеративного процесса, необходимо улучшающего значение целевой функции  на каждом шаге.

Применение симплекс-метода для задачи линейного программирования предполагает предварительное приведение ее формальной постановки к канонической форме с n неотрицательными переменными: (X1, ..., Xn), где требуется минимизация линейной целевой функции при m линейных ограничениях типа равенств. Среди переменных задачи выбирается начальный базис из m переменных, для определенности(X1, ..., Xm), которые должны иметь неотрицательные значения, когда остальные (n-m) свободные переменные равны 0. Целевая функция и ограничения равенства преобразуются к диагональной форме относительно базисных переменных, переменных, где каждая базисная переменная входит только в одно уравнение с коэффициентом 1.

Данная формальная модель задачи линейного программирования обычно задается в форме, так называемой симплекс-таблицы, удобной для выполнения операций симплекс-метода:

Симплекс-таблица

 

1

X1

X2

...

Xm

Xm+1

...

Xn

X0

A0,0

0

0

...

0

A0,m+1

...

A0,n

X1

A1,0

1

0

...

0

A1,m+1

...

A1,n

X2

A2,0

0

1

...

0

A2,m+1

...

A2,n

...

...

...

...

...

...

...

...

...

Xm

Am,0

0

0

...

1

Am,m+1

...

Am,n


 

Верхняя строка симплекс-таблицы  представляет целевую функцию задачи. Каждая строка симплекс-таблицы, кроме  первой, соответствует определенному  ограничению-равенству задачи. Свободные  члены ограничений составляют крайний  левый столбец таблицы. Слева  от таблицы записаны текущие базисные переменные (X1, ..., Xm). Сверху от таблицы приведен набор всех переменных задачи, гдеXm+1, ..., X- свободные переменные задачи.

На начальном шаге алгоритма  симплекс-метода должно быть выбрано  базисное допустимое решение (X1, ..., Xm) >= 0 при X= 0 (j = m+1, ..., n), следовательно, все свободные члены ограничений Ai,0 >= 0 (i = 1, ..., m). Когда это условие выполнено, симплекс-таблица называется прямо-допустимой, так как в этом случае базисные переменные, равные Ai,0, определяют допустимое решение прямой задачи линейного программирования. Если все коэффициенты целевой функции A0,j >= 0 (j = 1, ..., m), то симплекс-таблица называетсядвойственно-допустимой, поскольку соответствующее решение является допустимым для двойственной задачи линейного программирования.

Если симплекс-таблица  является одновременно прямо и двойственно  допустимой, т.е. одновременно все Ai,0 >= 0 и A0,j >= 0, то решение оптимально.

Действительно, поскольку  допустимыми являются лишь неотрицательные  значения управляемых параметров, то изменение целевой функции за счет вариации свободных переменных, через которые она выражена, возможно только в сторону увеличения, т.e. будет ухудшаться. Если среди ее коэффициентов имеются A0,j < 0, то значение целевой функции еще можно уменьшить (т.e. улучшить), увеличивая значение любой свободной переменной Xс отрицательным коэффициентом A0,j при побочном уменьшении базисных переменных, чтобы оставались справедливы ограничения задачи. Теоретически можно использовать любую свободную переменную XсA0,j < 0, но на практике обычно действуют в соответствии со стратегией наискорейшего спуска, выбирая минимальный элемент A0,p < 0 из всех отрицательных A0,j <&nbsp0:

A0,p = min A0,j < 0.

j

Столбец p симплекс-таблицы, соответствующий выбранному коэффициенту A0,p < 0, называется ведущим столбцом. Свободная переменная ведущего столбца должна быть введена в базис вместо одной из текущих базисных переменных. Очевидно, из базиса следует исключить такую переменную Xq, которая раньше других обращается в нуль при увеличении переменной Xведущего столбца.

Её индекс легко определить, если среди положительных элементов  ведущего столбца p найти элемент, минимизирующий отношение(Ai,0 / Ai,p):

Aq,0 Ai,0

------ = min ------ , i = 1,...,m.

Aq,p i Ai,p

Элемент Aq,p называется ведущим элементом, cтрока q симплекс-таблицы, содержащая ведущий элемент, называется, соответственно,ведущей строкой. Переменная ведущей строки Xзаменяется в базисе переменной ведущего столбца Xи становится свободной переменной с значением 0, в то время как новая базисная переменная Xдостигнет максимально возможного значения, равного: max X= ( Aq,0 / Aq,p).

После указанного взаимообразного  обмена переменными Xи Xмежду наборами свободных и базисных переменных нужно модифицировать исходную каноническую модель задачи путем приведения ее к диагональной форме относительно нового множества базисных переменных. Для указанного преобразования можно формально использовать процедуру исключения Гаусса, которая, как известно, состоит из двух элементарных операций, применяемых к системе алгебраических уравнений ( в данном случае ограничений - равенств):

  • умножение уравнения E1(X) = 0 на константу Kи замена уравнения E1(X) = 0 уравнением K1*E1(X) = 0;
  • сложение уравнений E1(X) = 0 и E2(X) = 0 c последующей заменой уравнения E2(X) = 0 уравнением E1(X) + E2(X) = 0.

Исключения Гаусса позволяют  привести систему уравнений к  диагональной форме относительно желаемого  множества переменных. В данном случае исключение Гаусса применяется так, чтобы все элементы симплекс-таблицы  в ведущем столбце, кроме ведущего элементаAq,p, стали нулевыми, а ведущий элемент стал равным единице:

Ai,p = 0, если i не равно q

и

Ai,p = 1, если i = q.

Указанные шаги симплекс-метода повторяются, пока не будет получена симплекс-таблица, которая одновременно является прямо и двойственно  допустимой. Если положит в такой  симплекс-таблице текущие базисные переменные равными Ai,0, а свободные - нулю, то будет получено оптимальное решение.

Практика применения симплекс метода показала, что число итераций, требуемых для решения задачи линейного программирования обычно колеблется от 2m до 3m, хотя для некоторых специально построенных задач вычисления по правилам симплекс метода превращаются в прямой перебор базисных допустимых решений. Однако, трудные для симплекс метода задачи на практике встречаются крайне редко, что объясняет широкое распространение и большую популярность данного метода линейного программирования по сравнению с другими подходами.

Постановка задачи

На звероферме могут выращиваться норки, выдры и нутрии. Для обеспечения  нормальных условий их выращивания  используется 3 вида кормов. Количество корма каждого вида, которое должны получать зверьки в среднем приведено в таблице:

 

Количество единиц корма, которое ежедневно должны получать

 

Вид корма

Норка

Выдра

Нутрия

Общее количество корма

I

4

2

5

190

II

5

3

4

320

III

7

9

5

454


Прибыль от реализации одной шкурки, руб.

150

320

350


В таблице указано общее  количество корма каждого вида, которое  может быть использовано зверофермой, и прибыль от реализации одной  шкурки зверька.

Определить, сколько зверьков каждого вида следует выращивать на звероферме, чтобы прибыль от реализации шкурок была максимальной.

Алгоритм решения  задач симплекс – методом

  1. Поставленная описательная задача переводится в математическую форму (целевая функция и ограничения).
  2. Полученное математическое описание приводят к канонической форме.
  3. Каноническую форму приводят к матричному виду.
  4. Ищут первое допустимое решение. Для этого матрица должна быть правильной. Матрица в ЗЛП называется правильной, если она содержит минимум m правильных (базисных) столбцов, где m – число строк в матрице. Столбец в канонической ЗЛП называется правильным (базисным), если все его элементы равны нулю, кроме единственного равного единице.
  5. Если матрица не является правильной, то ее нужно сделать таковой с помощью искусственного базиса. Для этого в матрицу нужно дописать столько базисных столбцов, чтобы их общее количество вместе с уже имеющимися базисными столбцами составляло m. После этого переходят к пункту 6. Если искусственный столбец выходит из базиса, то его удаляют из матрицы. Если удалены все искусственные столбцы, то получено первое допустимое решение. Если искусственные элементы не удается вывести из базиса, то система не имеет решений.
  6. Строят последовательность матриц. Нужно определить ведущий столбец, ведущую строку и ведущий элемент. Элемент, соответствующий ведущей строке, удаляется из базиса, а на его место ставят элемент, соответствующий ведущему столбцу. Составляют уравнение пересчета матрицы, выполняют пересчет, а затем проверяют его результаты на оптимальность. Если решение не оптимально, то заново ограничивают ведущий элемент, ведущую строку и ведущий столбец.

Информация о работе Решение задач линейного программирования симплекс методом