Стратегическое планирование и управление

Автор работы: Пользователь скрыл имя, 29 Апреля 2013 в 10:48, контрольная работа

Краткое описание

Важной особенностью систем СПУ является системный подход к вопросам организации управления, согласно которому коллективы исполнителей, принимающих участие в проекте и объединенные общностью поставленной перед ними задачи, рассматриваются как звенья единой сложной организационной системы.
Для отображения процесса выполнения проекта и управления им в системах СПУ используется сетевая модель.

Содержание

ВВЕДЕНИЕ 3
1. ОБЩАЯ ХАРАКТЕРИСТИКА СТРАТЕГИЧЕСКОГО ПЛАНИРОВАНИЯ И УПРАВЛЕНИЯ 5
1.1 Сетевое планирование и управление 5
1.2 Построение сетевого графика 8
2. ПРАКТИЧЕСКАЯ ЧАСТЬ 13
ЗАКЛЮЧЕНИЕ 17
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ 18

Вложенные файлы: 1 файл

27.docx

— 99.02 Кб (Скачать файл)

Если все соединения в графе  изображаются дугами, то граф называется ориентированным, или орграфом.

Последовательность дуг, в которой  конец каждой предыдущей дуги совпадает  с началом следующей, называется путем в орграфе.

Путь, у которого начальная вершина  совпадает с конечной, называется контуром. Контур с одной вершиной – петля.

Вершина, из которой дуги только выходят, но не входят, называется истоком.

Вершина, в которую дуги только входят, но не выходят, называется стоком.

Любой путь в сетевом графике  от истока к стоку называется полным.

Если дугам (ребрам) графа сопоставлены какие–то числовые характеристики – весами.

Вершина хi («предок») предшествует в графе вершине хj («потомок»), если существует путь из хi в хj .

Граф является упорядоченным, если в нем порядковый номер «предка» всегда меньше порядкового номера «потомка».

Графический номер упорядочения графа  реализуется по алгоритму Фалкерсона:

1–ый шаг – выделяем вершины, не имеющие «предков», и последовательно нумеруем их в произвольном порядке;

2–ый шаг – мысленно вычеркиваем из графа все вершины, имеющие номера и дуги из них выходящие;

3–ый шаг – в получившемся графе повторяем процедуры 1–го и 2–го шагов до тех пор, пока все вершины не будут пронумерованы.

Граф называется связанным, если любые  его две вершины можно соединить  путем, в котором не учитывается  ориентация дуг.

События обозначаются на сетевом графике  вершинами.

Подготовка исходных данных для  построения сетевого графика включает:

  • определение начального и конечного событий;
  • составления перечня всех событий, следующих за начальным, и без которых не может произойти конечное событие;
  • составление списка работ, соединяющих намеченные события;
  • определение продолжительности выполнения каждой работы.

При построении сетевого графика для  СПУ должны учитываться следующие  правила:

  • график должен иметь только одно начальное событие (исток) и только одно конечное событие (сток);
  • ни одно событие не может произойти до тех пор, пока не будут закончены все входящие в него работы;
  • ни одна работа, выходящая из какого либо события, не может начаться до тех пор, пока не произойдет данное событие;
  • график должен быть упорядоченным;
  • в сетевом графике не должно быть «тупиковых» событий, из которых не выходит ни одна работа, за исключением завершающего события;
  • в сетевом графике не должно быть «хвостовых» событий, кроме, исходного (начального), которым не предшествует хотя бы одна работа;
  • в сети не должно быть замкнутых контуров и петель, т.е. путей, соединяющих некоторые события с ними же самими;
  • любые два события должны быть непосредственно связаны не более чем одной работой–дугой.

В случае нарушения условия 1 или 8 рекомендуется ввести фиктивное  событие и фиктивную работу. Последовательность дуг, в которой конец каждой предыдущей дуги совпадает с началом следующей, называется путем. Любой путь от начальной  вершины (истока) к конечной вершине (стоку) называется полным. Если дугам  графа сопоставлены какие–то числовые характеристики, то граф называется взвешенным, а числовые характеристики – весами.

Таким образом, упорядочение сетевого графика заключается в таком расположении событий и работ, при котором для любой работы предшествующее ей событие расположено левее и имеет меньший номер по сравнению с завершающим эту работу событием. Другими словами, в упорядоченном сетевом графике все работы–дуги направлены слева направо: от событий с меньшими номерами к событиям с большими номерами.

 

2. ПРАКТИЧЕСКАЯ  ЧАСТЬ

Задание  на контрольную работу по дисциплине «Стратегический менеджмент»

 

№ варианта 27

 

 

  Студент  группы   Мз____                                Фамилия И.О. _____________

 

 

1. Построить  сетевой график  выполнения работ   по инвестиционной   деятельности  предприятия  по данным таблицы 1. Третью  строку таблицы  1          (продолжительность работы) заполнить  по данным таблицы 2  в соответствии с вариантом.

(№ варианта  равен двум последним цифрам  зачетной  книжки, если две последние  цифры зачетной книжки  больше 50, то № варианта равен 100 минус  номер зачетной  книжки)

2. Рассчитать  сетевую  модель табличным  методом  по параметрам работ.

 

 

                                                                                                       Таблица 1

 

№ работ

1

2

3

4

5

6

7

8

9

10

11

Код работы

1–3

1–2

1–4

1–5

2–6

3–9

3–10

4–8

4–11

5–15

6–7

Продолжи– тельность работы

34

30

13

26

30

22

7

15

5

20

32


 

 

№ работ

12

13

14

15

16

17

18

19

20

21

22

23

Код работы

7–12

8–11

9–10

10–13

11–14

12–16

12–13

12–14

13–16

14–16

15–16

16–17

Продолжи– тельность работы

14

24

42

48

46

18

0

0

54

34

18

22


 

 

 

 

 

 

Задание выдал            ____________________             к.э.н.    Игнатьева С.М.

 

Рис. 2. График выполнения работ  по инвестиционной   деятельности предприятия

 

Сформировав график работ, мы можем наглядно увидеть  и просчитать, какое количество времени  понадобится для выполнения той  или иной операции, кроме того, мы сможем наглядно увидеть, время которое  можем сэкономить.

Ранее начало работы (tPH=t(исх–i)) – время, раньше которого начать выполнение работы нельзя.

t2–6=30. То же самое будет для всех остальных значений, приведенных в задании и поместить полученные данные в таблицу для облегчения аналитического процесса.

Показатель tPO обозначает время, раньше которого нельзя закончить выполнение работы. И рассчитывается по формуле tPO=ti–j+tPH.

t1–3=34+0=34. Таким же образом, производим расчет остальных показателей и заносим их в таблицу.

Критический путь – самый долгий полный путь всего комплекса работ, т. е. максимальный по продолжительности путь от исходного события до завершающего события всего комплекса работ. Для нашего проекта критический путь составит 222 дня.

Необходимо найти параметр который демонстрирует нам время, за которое нельзя откладывать выполнение работы.

tПО=Ткр–tзаверш–j

t1–3=222 – 22 – 54 – 48 – 42 – 22=34, точно также находим данный показатель для оставшихся операций.

Затем находим показатель – время, позднее которого нельзя начинать выполнение работ:

tПН=tПО–ti–j

После этого  находим показатель RП – время, на которое можно задержать выполнение данной работы так, чтобы такая задержка не повлияла на время выполнения всего комплекса работ.:

tПН–tPH;


     RП=

tПО–tPO.

Свободный резерв времени работы – время, на которое  можно задержать выполнение данной работы так, чтобы такая задержка не повлияла на время выполнения последующих  работ, находится по формуле:

RC(i–j)= tPH–tPO

Рассчитанные  данные заносим в таблицу 2 в столбик  RC.

Таблица 2

Расчет сетевой  модели табличным методом

i- j

ti-j

tPH

tPO

tПО

tПН

RC

1-3

34

0

34

34

0

0

0

1-2

30

0

30

90

60

60

0

1-4

13

0

13

81

68

68

0

1-5

26

0

26

162

136

136

0

2-6

30

30

60

120

90

60

0

3-9

22

34

56

56

34

0

0

3-10

7

34

41

98

91

57

0

4-8

15

13

28

96

81

68

0

4-11

5

13

18

120

115

102

0

5-15

20

26

46

182

162

136

0

6-7

32

60

92

152

120

60

0

7-12

14

92

106

166

152

60

0

8-11

24

28

52

120

96

68

0

9-10

42

56

98

98

56

0

0

10-13

48

98

146

146

98

0

57

11-14

46

52

98

166

120

68

34

12-16

18

106

124

200

182

76

0

12-13

0

106

106

146

146

40

0

12-14

0

106

106

166

166

60

0

13-16

54

146

200

200

146

0

0

14-16

34

106

140

200

166

60

8

15-16

18

46

64

200

182

136

0

16-17

22

200

222

222

200

0

0


Рассматривая  табл. 2 мы видим все необходимые  сроки и можем себе представлять, где возможно увеличить или сократить  темп продвижения к цели.

ЗАКЛЮЧЕНИЕ

 

Чем сложнее  и больше планируемая работа или  проект, тем сложнее задачи оперативного планирования, контроля и управления. В этих условиях применение календарного графика не всегда может быть достаточно удовлетворительным, особенно для крупного и сложного объекта, поскольку не позволяет обоснованно и оперативно планировать, выбирать оптимальный вариант продолжительности выполнения работ, использовать резервы и корректировать график в ходе деятельности.

Весь процесс  находит отражение в графической  модели, называемой сетевым графиком. В сетевом графике учитываются все работы от проектирования до ввода в действие, определяются наиболее важные, критические работы, от выполнения которых зависит срок окончания проекта. В процессе деятельности появляется возможность корректировать план, вносить изменения, обеспечивать непрерывность в оперативном планировании. Существующие методы анализа сетевого графика позволяют оценить степень влияния вносимых изменений на ход осуществления программы, прогнозировать состояние работ на будущее. Сетевой график точно указывает на работы, от которых зависит срок выполнения программы.

Сетевое планирование и управление — это совокупность расчётных методов, организационных  и контрольных мероприятий по планированию и управлению комплексом работ с помощью сетевого графика (сетевой модели).

На основании  вышеизложенного можно утверждать, что методы сетевого планирования и  управления обеспечивают руководителей  и исполнителей на всех участках работы обоснованной информацией, которая  необходима им для принятия решений  по планированию, организации и управлению. А при использовании вычислительной техники СПУ является уже не просто одним из методов планирования, а  автоматизированным методом управления производственным процессом.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

 

  1. Орчаков О.А. Стратегический менеджмент: Учеб. Пособие. - М.: изд-во МНЭПУ,2010. – 412 с.
  2. Лютенс Ф. Стратегический менеджмент в организации/Пер.с англ. 7-го изд.-М.: ИНФРА - М.2009. – 126 с.
  3. Максименко А.А. Менеджмент организации: Учеб.пособие.-Кострома:КГУим. Н.А.Некрасова,2008. – 209 с.
  4. Самыгин С.И., Столяренко Л.Д. Сетевое планирование: Учебное пособие. – Ростов н/Д.: Изд-во «Феникс», 2010.  – 94 с.

 

 


Информация о работе Стратегическое планирование и управление