Автор работы: Пользователь скрыл имя, 06 Декабря 2012 в 16:34, курсовая работа
Цель работы: изучение влияния индивидуализации на эффективность обучения математике.
Для достижения цели поставим перед собой следующие задачи:
1. определить понятие «индивидуализация»;
2. выделить те особенности учащихся, которые в первую очередь следует учитывать при индивидуализации учебной работы;
3. дать характеристику основным формам индивидуализации.
ВВЕДЕНИЕ…………………………………………………………….……2
Педагогические и психологические основы
процесса индивидуализации.…………………………. …………………4
Понятие и сущность индивидуализации …………….…………………….4
Особенности индивидуализации в преподавании математики
в условиях малокомплектной базовой школы …………………………14
Опыт индивидуализации в обучении.……………………………………15
Формы и методы индивидуализации в обучении……….………………….17
ЗАКЛЮЧЕНИЕ……………………..………………………….…….……...28
Список использованных источников………………………………………..29
Переходным видом является уровневая (разноуровневая) дифференциация в рамках одного класса. В связи с этим введены стандарты в усвоении содержания учебного материала: базовый, повышенный, углубленный.
Внешняя дифференциация реализуется в организации работы профильных и углубленных классов, факультативов, гимназий лицеев, и колледжей.
В мировой практике можно выделить следующие виды внутренней дифференциации:
Модель разнородных классов
Ее основная характеристика в том, что в каждой области того или иного предмета у ученика могут быть разные способности.
При использовании этой модели ученик по всем предметам учится в разнородном классе. Для некоторых предметов (это может быть и математика) материал сгруппирован в разделы, и на каждый отводится определенное количество времени (примерно пять недель). По окончании изучения предмета проводятся диагностические тесты с целью определения уровня усвоения основного материала. По результатам тестирования одним ученикам дается дополнительный материал, а другим - коррекционные задания.
После короткого периода повторения для одних учеников и углубления знаний для других, когда усвоено основное содержание предыдущего раздела, класс начинает переходить к новому разделу. Учебные программы построены таким образом, что при переходе к новому материалу ученики оказываются на равных условиях.
Использование данной модели позволяет учитывать различия между детьми в рамках одного класса.
Интегративная модель
Суть в том, что дети
с разными способностями, как
и в модели разнородных классов,
помещаются в одну группу. Но акцент
делается на индивидуальное развитие
и самостоятельное обучение. Особенность
модели - существенное различие учебных
программ и видов деятельности. Ученик
должен научиться (самостоятельно или
сотрудничая с другими
Уровневая дифференциация предполагает такую организацию обучения, при которой, обучаясь по одной программе, школьники имеют возможность осваивать ее на разных уровнях: базовом, повышенном, углубленном. Базовый уровень знаний определяет возможность дальнейшего качественного усвоения школьного курса. Важно, что учащиеся выполняют задания разного уровня сложности. Это условие является ключевым в определении новых подходов к контролю за уровнем усвоения знаний и умений. Выполнение заданий базового уровня дает возможность учащимся получить оценку „удовлетворительно”. Выполнение заданий базового уровня и повышенного - оценку „хорошо”, а базового, повышенного и углубленного уровней - оценку „отлично”.
Г.А.Русских так определяет цель технологии уровневой дифференциации: «Создать условия для развития умений успешно самостоятельно работать на уроке, ориентируясь на уровень собственных познавательных интересов и учебных возможностей, но не ниже базового уровня».[29]
В основе данной технологии лежит идея о том, что “все учащиеся способны хорошо учиться, а различие их по уровню обучаемости сводится ко времени, необходимому ученику для усвоения учебного материала. Следовательно, если каждому ученику отводить время, соответствующее его личным способностям и возможностям, то можно обеспечить усвоение школьной программы”.[29]
Для урока в режиме уровневой дифференциации характерна уровневая цель:
1 уровень - репродуктивный.
На этом уровне ученик
2 уровень - конструктивный.
Это уровень запоминания
3 уровень - творческий. Это
уровень понимания учебного
Задания первого типа предполагают воспроизведение определения, формулировки правила, закона или теоремы; применение учащимися понятия (закона, правила) по образцу в соответствии с предлагаемым ориентирами.
Задания второго типа представлены задачами конструктивного характера, при выполнении которых учащимся приходится использовать несколько алгоритмов, формул, теорем, если все они даны в ясном виде. При выполнении таких заданий ученик должен увидеть в измененной ситуации образец.
К третьему типу относятся задания творческого характера, при выполнении которых учащимся необходимо найти выход из нестандартной ситуации. Учитель задает вопрос «почему», «докажите».
Существуют разные методические
приемы использования
Рассмотрим примеры
Предлагаю такую дифференцированную самостоятельную работу по теме «Площади фигур» (по одному заданию на урок). [39]
1-й вариант - основной уровень;
2-й вариант - более сложный уровень;
3-й вариант - продвинутый уровень.
ВАРИАНТ 1
1. Гипотенуза равнобедренного
прямоугольного треугольника
2. Найдите площадь правильного треугольника со стороной 6 см.
3. Стороны прямоугольника относятся как 8:15, диагональ равна 34 см. Найдите площадь треугольника.
4. Вычислите сторону квадрата
равновеликого прямоугольнику
ВАРИАНТ 2
1. Найдите площадь треугольника прямоугольного треугольника, если его катеты относятся как 3:4, а гипотенуза равна 25 см..
2. Площадь правильного треугольника равна . Найдите длину его биссектрисы.
3. Вычислите площадь
4. Стороны параллелограмма 3 дм и 52 дм. Угол, который образует меньшая сторона с высотой, равен 600. Найдите площадь параллелограмма.
ВАРИАНТ 3
1. Докажите. Что в прямоугольном
треугольнике произведение
2. Найдите площадь правильного треугольника, если радиус вписанной окружности равен см.
3. Вычислите периметр прямоугольника, если его площадь 375 дм2, а одна сторона составляет 60% другой.
4. Вычислите площадь
Цель уровневой дифференциации - достижение всеми школьниками базового уровня подготовки, представляющего собой государственный стандарт образования, и одновременно создание условий для развития учащихся, проявляющих интерес и способности к математике. В соответствии с этим и контроль должен иметь двухступенчатую структуру. А именно, в ходе контроля необходимо выделять два принципиальных подхода - проверку достижения уровня обязательной подготовки и проверку достижения на повышенном уровне. Например, по теме «Квадратные уравнения» для зачета предлагается использовать следующие виды заданий:
Обязательная часть
1. Решите уравнения:
а) 2x-x2=0; в) 3x2+5x-2=0;
б) x2-16=0; г) x2-3x-1=0.
Дополнительная часть.
Решите уравнение (2x-4)(x-3)=5(6-2x).
Сумма двух последовательных натуральных чисел на 71 меньше их произведения. Найдите эти числа.[17]
Приведем пример текста контрольной работы по алгебре в VЙЙ классе по теме “Преобразование целых выражений”, предложенный Морозовой Л.В. [24] Первый вариант - на уровне обычного государственного стандарта, второй - на повышенном уровне сложности.
Вариант 1
1. Упростите выражение:
а) 2c(1+c)-(c-2)(c+4);
б) (y+2)2-2y(y+2);
в) 30x+3(x-5)2;
г) (b2+2b)2-b2(b-1)(b=1)+2b(3-2b)
2. Разложите на множители:
а) 4a-3a3; б) ax2+2ax+a;
в) 16 - y4; г) a+a2-b-b2.
Докажите, что выражение c2-2c +12 может принимать лишь положительные значения.
Вариант 2
1. Докажите, что при любом целом n значение выражения
(2n-3)2-(4n-1)(n+6) кратно 5.
2. Какое значение принимает выражение a(a+2)+c(c-2) - 2ac при a - c=7?
3. Найдите наименьшее значение выражения 4x2-4x+11.
4. Докажите, что если к
произведению трех
5. Разложите на множители:
а) a2+4ab-3a2b-6ab2+4b2; б) (a+b+c)2 - (a-b-c)2.
Внутриклассная индивидуализация учебной работы.
Необходимость во внутриклассной индивидуализации тем настоятельнее, чем более разнородный класс служит объектом такой индивидуализации. В таком классе индивидуализация может происходить во всех трех формах классной работы: фронтальной, групповой, индивидуальной.
Возможности индивидуального подхода во фронтальной работе в отечественной дидактике 50-х годов изучал В.И.Гладких. В его исследовании принимались во внимание в основном индивидуальные особенности учащихся при опросе во всех звеньях учебного процесса. Кроме методики опроса, разработанной Гладких, для этого подходят и следующие приемы: использование различных уровней рассказа в устном изложении учителя, т.е. учитель в начале упрощает свой материал, а затем усложняет его; применение учебной беседы, в ходе которой учеников провоцируют на выдвижение проблем и демонстрацию своих дополнительных, внепрограммных знаний; учет индивидуальных различий в ролевой игре, в дискуссии и т.д.
Начиная с 60-годов, основные возможности индивидуализации в советской педагогике усматриваются в самостоятельной работе школьников (это понятие зачастую используется как синоним индивидуальной работы).
В качестве основной возможности индивидуализации при фронтальной работе в зарубежной педагогике выделяется учебная беседа. В беседе ученику дается возможность свободно выразить свои мысли, связанные с его личным опытом и интересами.
Ряд возможностей индивидуализации представляет и групповая работа. В малой группе учащийся находится в более благоприятных, чем при фронтальной работе всем классом, условиях в отношении возможности действовать в соответствии со своей индивидуальностью. В беседе внутри малой группы он может высказывать свое мнение, активнее участвовать в решении учебных задач в соответствии со своими интересами и способностями. Особенно благоприятные возможности для индивидуализации представляют группы, которые структурированы определенным образом. Это, прежде всего, группы, которые сформированы учителем на основании уровня развития учащихся (обычно уровня знаний и/или умственных способностей). В таких случаях более сильной группе предоставляются более сложные задания, а более слабой - задания полегче. Группа может быть сформирована и на основании пожеланий самих учеников. В таком случае совместно работают учащиеся со сходными интересами, стилем работы и связанные дружескими отношениями. Работа в такой группе создает особо благоприятные условия для проявления личных качеств. Кроме того, здесь можно предложить группам задание по выбору.
Наиболее широкие возможности для индивидуализации обучения представляет индивидуальная самостоятельная работа, которая проходит в одиночестве и в индивидуальном темпе. Самостоятельная работа учащихся - это такой способ учебной работы, где
учащимся предлагаются учебные задания и руководства для их выполнения;
работа проводится без
непосредственного участия
выполнение работы требует
от учащегося умственного
В ходе самостоятельной работы каждый ученик получает конкретное задание, которое предполагает выполнение определенной письменной работы, учащимся даются не одинаковые задания, которые варьируются в зависимости от индивидуальных особенностей учащихся, а также путем группировки учащихся внутри класса по различным признакам.
Следует заметить, что коллективные методы работы органически сочетаются с групповыми и индивидуальными. Практически это осуществляется так: в начале урока учитель ставит перед всеми учениками ту или иную задачу (усвоить какие-то знания, овладеть какими-то умениями и навыками) и начинает коллективную работу со всем классом. По мере того как часть учеников овладевает содержанием материала, изучаемого фронтально, учитель дает им самостоятельные задания (работа с книгой, выполнение каких-то заданий и т.д.), а сам продолжает отрабатывать материал с остальными учащимися. После того как учитель убедился, что материал усвоен следующей группой учащихся, он предлагает им самостоятельную работу по закреплению и углублению полученных знаний, умений, навыков и и продолжает заниматься с оставшимися учениками. Когда материал усвоили и они, им тоже дается самостоятельное задание (учитель в это время просматривает работы, выполняемые учениками первых двух групп). К концу урока ученики всех групп усваивают материал.
Информация о работе Индуализация преподавания математики в малокомплексной базовой школе