Автор работы: Пользователь скрыл имя, 16 Апреля 2014 в 21:00, контрольная работа
Объект – учебно-воспитательный процесс в дошкольных учреждениях.
Предмет – формирование представлений о величине предметов и измерении величин у старших дошкольников.
Цель – исследовать особенности формирования представлений о величине предметов и измерении величин у детей старшего дошкольного возраста.
Гипотеза в процессе специального обучения возможно сформировать у старших дошкольников представления о величине и обучить измерению величин, что необходимо для дальнейшего обучения в школе.
Введение……………………………………………………………………..….2
1.Значение обучения детей дошкольного возраста простейшим
измерениям……………………………………………………………………..4
2. Развитие у детей старшего дошкольного возраста приемов измерения длины, массы, вместимости сосудов………………………………………….10
3. О способах, измерения длин………………………………………………...13
4. Организация работы по изучению измерений с детьми шестого года
жизни……………………………………………………………………………17
5. Ознакомление с множеством………………………………………………..23
6. Методика работы по развитию представлений о величине и способах измерения……………………………………………………………………….24
Список используемой литературы ..............................................................
Работа над множествами в старшей группе должна быть продолжена дальше. В этой группе можно разнообразить выделение частей (подмножеств) множества (по их признакам и по количеству частей). Например, множество игрушек сгруппировать по признаку материала: часть деревянных, часть резиновых, часть глиняных, часть пластмассовых – в едином множестве игрушек четыре части. Можно сосчитать общее количество игрушек (10) и количество игрушек в каждой части (5, 2, 2 и 1), признав за основную первую часть (5), дополнять до всего множества остальные части 2, 2 и 1. Соединение всех частей вместе вновь образует единое целое множество. Такие упражнения позволят подвести детей к пониманию того, что множество как структурно-целостное единство, обладая общим признаком, не всегда состоит из одинаковых по своим качествам элементов. В нем можно сосчитать не только количество отдельных элементов, его образующих, но и количество отдельных частей. Расчленение множества на части и объединение этих частей в единое целое будет знакомить детей и с отношениями между частью и целым. Все это развивает мышление детей, упражняет их сообразительность, углубляет понятие единицы, готовит к пониманию сущности арифметических действий.
Упражнять детей в понимании того, что множество может быть составлено из разных по качеству элементов; элементом множества может быть как отдельный предмет, так и целая группа.
Упражнять детей в выделении нескольких частей множеств по тому или иному признаку, устанавливать отношения между конечным множеством и его частями: целое больше своей части; устанавливать между одинаковыми по численности частями взаимно-однозначное соответствие, определять большую, меньшую часть или их равномощность и вновь воссоединять эти части в единое целое, познакомив с операцией объединения множеств.
Познакомить с операцией удаления части множества.
Познакомить со значением слова один (одна, одно), которое обозначает не только один предмет, но и целую группу предметов как одну часть множества.
Количество и счет. Учить детей считать в пределах 10. Закреплять и формировать умения и навыки отсчитывания предметов в пределах 10 по образцу и заданному числу. Уметь определять равное количество в группах разных предметов, правильно обобщать множества числом на основе счета и сравнения множеств (здесь всех предметов по 5, по 8, по 10).
Уметь считать предметы при разном пространственном их расположении (а не только при линейном).
Уточнить представление, что число не зависит от характера элементов, их качественных признаков (от величины предметов, от расстояния между ними, от пространственного расположения), а также от направления счета (слева – направо, справа – налево, с середины в стороны и др.).
Знать количественный состав числа из единиц в пределах пяти (пять – это один, еще один, еще один, еще один и еще один) на конкретном материале.
Учить сравнивать смежные числа в пределах 10, опираясь на сравнение конкретных множеств; знать, как из неравенства сделать равенство (восемь больше семи; если к семи добавить один, будет по восемь, поровну; семь меньше восьми, в множестве семь не хватает одного, значит, если из восьми вычесть один, то будет в обеих группах по семь, поровну).
Учить детей порядковому счету в пределах 10; уметь различать значение вопросов «какой», «который», «сколько» и правильно отвечать на них.
Начать формировать понятие, что предмет можно разделить на несколько равных частей (на две, четыре). Например, одно яблоко можно разделить пополам, т.е. на две равные части, каждая из частей называется одной половинкой; яблоко можно разделить на четыре равные части, каждая из частей называется одной четвертью яблока. Точно так же можно разделить квадрат, круг на несколько равных частей и получить половину квадрата, одну четверть квадрата и т.д. (дети сами делят яблоко, круги др.).
Величина. Уточнять представления об изменениях протяженности предметов по длине, ширине, высоте, толщине, приучая детей правильно отражать эти умения в речи («Стало длиннее», «Это тоньше», «Веревка толще нитки» и т.д.).
Развивать глазомер детей, учить на глаз определять длину или толщину палки, ширину ленты, высоту забора, дерева, оценивая воспринимаемые размеры путем сопоставления с длиной известных ребенку предметов или отрезков (толщиной с палец, высотой с человека, тонкая, как нитка, толстая, как веревка, длиной в два шага и др.).
Форма. Закреплять представления о шаре, кубе, цилиндре, конусе, брусе (прямоугольный параллелепипед), квадрате, прямоугольнике, треугольнике, круге, овале, трапеции и правильно называть их.
Учить считать количество вершин, сторон, углов в разных плоских фигурах.
Познакомить с различием некоторых геометрических фигур (прямоугольника и трапеции, конуса и пирамиды).
Учить видеть геометрическую форму в жизненных предметах: что похоже на шар (мячик, арбуз и др.), на цилиндр (стакан, банка и др.), на конус (воронка, пирамидка и др.), на круг (блюдце, тарелка и др.), на прямоугольник (крышка стола, стена, пол, потолок, дверь и др.). на квадрат (платочек), на треугольник (косынка), на овал (очертания продольного разреза яйца, край блюда и др.), на трапецию (детский стол, крыша домов и др.).
Ориентировка в пространстве. Закреплять умения определять словом положение того или иного предмета по отношению к себе (впереди меня идет Андрюша, слева от меня стол); по отношению к другому (справа от куклы сидит заяц, а впереди куклы стоит петух).
Упражнять в пространственной ориентировке во время движения, учить изменять направление движения во время ходьбы, бега, гимнастических упражнений.
Упражнять в определении своего положения среди окружающих предметов (например, я стою за стулом, я стою около стула, я стою среди кубиков, я стою перед Мишей, напротив Миши, сзади Миши, справа от Лены и слева от Коли. Значит, Коля от меня справа, а Лена от меня слева и т.д.).
Ориентировка во времени. Научить последовательно называть дни недели. Определять, какой день сегодня, какой был вчера и какой будет завтра.
Развивать у детей «чувство времени» – знакомя практически с длительностью отдельных временных отрезков, учить определять, что можно сделать за какой-либо из этих отрезков.
Ориентировка в весе. Развивать у детей барическое чувство («чувство веса»), находить равные и неравные по весу предметы, взвешивая их па ладонях, сначала на контрастных показателях. Определять по весу предметы, раскладывая их в восходящем или убывающем порядке.
5.Ознакомление с множеством.
В предшествующих группах дети много раз практически имели дело с множествами. Они знакомы с тем, что всякие конкретные совокупности состоят из отдельных предметов, но можно в этих совокупностях (множествах) выделить и отдельные части, обладающие теми или иными признаками.
Перед воспитателем старшей группы стоит задача – углубить представления детей о множестве, раскрыть значение терминов множество, элементы множества и приучить пользоваться ими.
Воспитательница предлагает детям привести примеры множеств. «Множество квадратов», «Множество дверей в комнате», «Множество домов на улице», – называют дети. Воспитательница
стучит несколько раз по столу и спрашивает: «А как можно назвать это?» – «Множество звуков», «Множество движений», – отвечают дети. Воспитательница предлагает подумать, из чего составляется всякое множество. Дети отвечают, что множество составляется из отдельных предметов, отдельных звуков, отдельных движений. Воспитательница, обобщая, говорит, что эти отдельные предметы, отдельные звуки, отдельные движения, входящие в состав множества, называются элементами множеств. Она называет несколько множеств и просит сказать, что в том или другом случае будет именоваться множеством и его элементом (множество карандашей, множество детей, множество столов в группе, множество игрушек и др.).
Далее с помощью воспитателя дети обнаруживают, что не все элементы в множествах бывают однородными, например элементами множества «мебель» будут: столы, стулья, шкаф, полка, буфет и другое, т.е. одни элементы одинаковые, как столы, стулья, а другие разные, как полка, буфет шкаф. «Что же можно сказать об элементах множества?» – спрашивает воспитательница, подводя детей к обобщению: множество может состоять из элементов разного качества. Она предлагает самим детям составить какое-либо множество из элементов разного качества. Дети приносят игрушечных мишку, петуха, лошадку. «Как можно назвать это множество?» – ставит новый вопрос воспитательница. Одни дети говорят, что это множество игрушек, а другие – что это множество животных. Оба ответа верны.
6. Методика работы по развитию представлений о величине и способах измерения
Дети уже на предшествующем этапе усвоили, что предметы могут изменяться по длине, ширине, высоте, толщине. Но важно, чтобы дети не только определяли эти изменения на готовом материале, но и сами производили их. Например, им предлагается нарисовать или Бырезать два-три прямоугольника одинаковой длины, но разной ширины; нарисовать две морковки: одну – длиннее, а другую – короче; вырезать из бумаги квадраты: один – большой, а другой – маленький.
Приобретенные детьми знания о различных параметрах протяженности должны правильно отражаться в речи: «Нитка белая толще черной нитки» или «Мне нужна длинная нитка для нанизывания бус» (а не большая, как часто говорят дети). Нужно также, чтобы эти знания дети использовали в различных видах деятельности: в рисовании, лепке, аппликации, в играх и т.д. Например, для игры «в поезд» дети рисуют на площадке железнодорожный путь, обозначают станции, находящиеся на разном расстоянии от Ленинграда (по одну сторону от него): одна – ближе, другая – дальше. Дети могут и более точно определить эти расстояния, например станция Удельная – ближе к Ленинграду, и дети отсчитывают четыре шага, а станция Левашово – дальше, и дети отсчитывают от начала пути шесть шагов. «А на сколько дальше до станции Левашово?», – ставит вопрос воспитательница. И считая расстояние между станциями Удельной и Левашово шагами, дети говорят, что Левашово дальше на два шага. Так шаг становится мерой измерения в игре детей.
Другой пример. Соревнуясь в бросании мяча в цель или в метании мешочков на расстояние, дети хотят узнать, кто из них бросает дальше и на сколько. Это можно определить на глаз или более точно, подсчитав количество шагов от исходной линии до места падения мешочка. Таким образом возникает жизненная потребность в практическом измерении расстояния.
У детей старшей группы необходимо сформировать четкие представления об отношениях по величине между предметами, которые отражаются в словах, указывающих место предмета в ряду других: длинный, короче, еще короче, самый короткий. Уже в средней группе дети были подведены к распознаванию отношений между двумя-тремя предметами. В старшей группе дети должны освоить отношения между пятью – десятью предметами, которые образуют ряд возрастающих и убывающих величин, т.е. овладеть «сериацией». Усвоение этих отношений является относительно сложной задачей, связанной с развитием у детей аналитического восприятия предмета (выделение длины, ширины, высоты) и умением соизмерять предметы путем сопоставления их по данным параметрам. Большую роль в этом играет развитие глазомера.
В целях проверки знаний, усвоенных в средней группе, можно предложить детям подобрать ленту в соответствии с образцом, величину которого следует запомнить. Материалом могут служить два набора по пять парных лент одинаковой ширины, но разного цвета и разной длины (от 12 до 20 см), при этом в каждой паре одинаковой длины цвет лент может быть разным. Задача состоит в том, чтобы абстрагировать в предъявленном образце лишь одну длину и в соответствии с ней найти парную ленту. Выполненное задание должно быть проверено самим ребенком. «Как доказать, что твоя красная лента одинаковой длины с моей синей?» Ребенок сначала указывает приемы проверки, потом доказывает это практически.
Другой вариант занятия. Всем детям раздаются по пять разноцветных полосок одинаковой ширины, но разной длины (с разницей в 2 см). Предлагается разложить их по порядку (рис. 15), но кто как хочет (в возрастающей или убывающей последовательности). Затем дети объясняют: «У меня самая длинная полоска – красная, покороче – розовая, еще покороче – синяя, еще короче – голубая и самая короткая – зеленая». Другой ребенок называет цвет и размер своих полосок, расположенных в возрастающем порядке. Это упражнение способствует уточнению восприятия размера и цвета и совершенствованию речи детей.
Задание может быть предложено детям и по-другому: разложенные по порядку четыре ленты сопоставляются по длине друг с другом, и дети практически знакомятся с транзитивностью отношений. Например, дети говорят, что красная лента длиннее розовой, розовая длиннее желтой, а желтая длиннее зеленой. «Значит, красная лента длиннее каких лент?» – ставит вопрос воспитательница, стимулируя мысль детей. Сначала дети называют лишь отдельные ленты («Красная лента длиннее желтой», «Красная лента длиннее зеленой» и т.д.). Воспитательница предлагает подумать и перечислить сразу все ленты, длиннее которых красная лента. Посмотрев еще раз на ряд лент, ребенок отвечает: «Красная лента длиннее розовой, желтой и зеленой. Она самая длинная из всех лент». – «А какая лента самая короткая?» – ставит новый вопрос воспитательница. Дети называют зеленую ленту. «А какой же ленты она немного короче?» – «Желтой». Так сначала сравниваются по порядку все смежные ленты, затем делается обобщение: «Каких же лент короче зеленая лента?»
Неоднократно упражняясь в сравнении лент, полосок и других предметов, расположенных в убывающем или возрастающем порядке, дети по сути дела практически знакомятся с транзитивностью отношений (Л > В, В > С, С > > D, значит, А > D).
Весьма важно также привлечь внимание детей к тому, на сколько одна полоска длиннее другой в сериационном ряду. Из предложенных пяти полосок одинакового цвета, одинаковой ширины и разной длины дети образуют сериационный ряд. Это «лесенка», а это «ступеньки», говорят дети, двигая пальчиком по лесенке «вверх» и «вниз». Воспитательница предлагает подумать, что надо сделать, чтобы две смежные полоски сделать равными по длине. Она вносит несколько прямоугольников разной длины, но той же ширины, что полоски, и предлагает выбрать прямоугольник, который дополнил бы одну из смежных полосок, чтобы сделать их равными. Подставляя выбранный прямоугольник к своим полоскам, дети устанавливают равенство между смежными полосками. Далее педагог предлагает детям подумать и догадаться, на сколько одна полоска длиннее другой. Дети показывают маленький прямоугольник, который они подставляли ко всем полоскам, уравнивая смежные полоски. «На сколько же одна ступенька лестницы больше другой?» Подкладывая прямоугольник ко всем полоскам по порядку, дети приходят к выводу, что ширина «ступенек лестницы» всюду одинакова. «Что же надо сделать, чтобы все полоски были одинаковой длины?» – ставит новый вопрос воспитательница. Дети задумываются. Воспитательница каждому дает по четыре-пять полосок и предлагает подумать, какие из этих полосок куда дети должны положить, чтобы превратить лестницу в прямоугольник. Дети выполняют задание и подсчитывают, из скольких малых прямоугольников состоит полоска, которую они подложили ко второй ступеньке лестницы, к третьей и к четвертой. «А что означает каждый малый прямоугольник на полосках?» – спрашивает воспитательница, обращая внимание детей на размер той полоски, которая показывает разность длин смежных ступенек.
Информация о работе Организация работы по изучению измерений с детьми шестого года жизни