Шпаргалка по предмету «Физиология Центральной Нервной Системы»

Автор работы: Пользователь скрыл имя, 12 Ноября 2014 в 21:14, шпаргалка

Краткое описание

Работа содержит ответы на вопросы для экзамена по дисциплине «Физиология Центральной Нервной Системы».

Вложенные файлы: 1 файл

ЦНС ФИЗИОЛОГИЯ.doc

— 502.00 Кб (Скачать файл)

Латеральное коленчатое тело имеет слоистую структуру и состоит из 6 слоев. Аксоны, идущие в ЛКТ из зрительного тракта, распределяются в нем с поразительной четкостью: три слоя ЛКТ (5,3,2) связаны с ипсилатеральным глазом, а три остальные (6,4,1) - с контралатеральным. Клетки более глубоких слоев (1,2) крупнее, чем клетки менее глубоких. Нейроны ЛКТ обладают концентрическими рецептивными полями, центр и периферия которых антагонистичны и по-разному реагируют на изменение освещенности. Рецептивное поле нейрона ЛКТ представляет собой концентрически организованную совокупность рецепторов сетчатки, имеющую либо возбуждающий (при включении света) центр и периферическую тормозную часть, либо, напротив, тормозный центр и возбуждающую данный нейрон ЛКТ периферическую область.

Такая организация рецепторного поля позволяет нейронам ЛКТ хорошо реагировать на контраст при определении границы между темным и светлым и на суммарную яркость светового стимула.

У млекопитающих некоторые нейроны ЛКТ обладают цветоспецифичными рецепторными полями и могут возбуждаться или, наоборот, тормозиться в зависимости от длины волны светового стимула. Таким образом, нейроны ЛКТ, также как и нейроны сетчатки, принимают участие в анализе зрительной информации.

Восходящие пути слуховой системы, идущие из нижних бугров четверохолмия и по волокнам латеральной петли, проецируются в специфическое таламическое ядро - медиальное коленчатое тело (МКТ), от которого начинается тракт, достигающий первичной слуховой коры в верхней части височных долей. Медиальное коленчатое тело состоит из мелкоклеточной и крупноклеточной частей и обладает специализиацией своих нейронов. Так, например, нервные клетки мелкоклеточной части МКТ имеют довольно узкую настройку на восприятие звуков различной высоты и принимают участие в анализе и передаче акустической информации.

Итак, таламус является посредником, в котором сходятся все раздражения от внешнего мира и, видоизменяясь здесь, направляются к подкорковым и корковым центрам.

В специфические ядра таламуса проецируются афференты не только от экстерорецепторов и рецепторов двигательного аппарата. Электрофизиологические исследования показали, что в таламусе имеются области проекций блуждающего и чревного нервов, чувствительные волокна которых несут информацию от интероцепторов. В то же время таламус имеет связи с гипоталамусом, где сосредоточены главные вегетативные центры.

 

Ассоциативные ядра, в отличие от специфических ядер, не могут быть отнесены к какой-либо одной сенсорной системе и получают афферентные импульсы от специфических проекционных ядер. Три ядра этой группы имеют связи с главными ассоциативными областями коры: ядро подушки связано с ассоциативной зоной теменной и височной коры, заднее латеральное ядро - с теменной корой, медиальное дорсальное ядро - с лобной долей. Четвертое ядро - переднее - имеет связи с лимбической корой больших полушарий. По-видимому, ассоциативные ядра участвуют в высших интегративных процессах, однако их функция изучена еще недостаточно. Ассоциативные ядра расположены в подушке. Разрушение подушки приводит к нарушению речевых функций и «схемы тела».

 

К моторным ядрам таламуса относится вентролатеральное ядро, которое имеет вход от мозжечка и базальных ганглиев и одновременно дает проекции в моторную зону коры больших полушарий. Моторные ядра таламусы являются релейными несенсорными ядрами. Это ядро включено в систему регуляции движений, и, как показал материал клиники, разрушение некоторых его участков ослабляет симптомокомплекс болезни Паркинсона. Разрушение вентролатерального ядра приводит к возникновению хорей и патологического тремора.

 

Неспецифические ядра функционально связаны с ретикулярной формацией ствола. Неспецифические ядра имеют широкие связи со всеми основными структурами мозга, в том числе, с ретикулярной формацией и лимбической системой. К числу этих ядер относится срединная и интроламинарная группа ядер таламуса, которая получает афферентный вход от волокон, восходящих из ретикулярной формации, и, кроме того, имеет двусторонние связи со специфическими ядрами таламуса. Эти ядра обнаруживают не локальные, в отличие от специфических, а диффузные проекции во все области коры. Основная функция состоит в регуляции возбудимости и электрической активности корковых нейронов.

При сопоставлении функций специфических и неспецифических ядер таламуса возникает резонный вопрос о взаимодействии этих двух систем, которые могут влиять на одни и те же нейроны коры больших полушарий. Как показали электрофизиологические исследования, восходящие влияния неспецифических ядер таламуса проявляются не в вызове разряда коркового нейрона, а в изменении его возбудимости. Неспецифические влияния из таламуса, повышая возбудимость корковых нейронов, облегчают их деятельность, при этом ответы корковых нейронов на импульсы, приходящие из специфических проекционных ядер, усиливаются. Вместе с тем неспецифические влияния могут иметь и противоположный знак и обнаруживать угнетающее действие на разряды корковых нейронов. Существует точка зрения, что неспецифические ядра включены в восходящую активирующую систему и являются посредниками между корой и ретикулярной формацией ствола, которая получает информацию от всех органов чувств. Таким образом, неспецифические ядра передают активирующие влияния ретикулярной формации и участвуют в поддержании оптимального тонуса коры. Неспецифические ядра оказывают модулирующее влияние, обеспечивают плавную перестройку высшей нервной деятельности.

К неспецифическим ядрам таламуса относятся ретикулярные ядра. Они выполняют функцию затормаживания релейных специфичных нейронов, переключающих сенсорные пути. Торможение осуществляется по принципу возвратного торможения: релейный нейрон отсылает коллатераль аксона к тормозному нейрону, который и затормаживает релейный нейрон.

 

25. Роль ретикулярных ядер зрительного бугра в работе ЛКТ

 

К неспецифическим ядрам таламуса относятся ретикулярные ядра. Они располагаются в переднем таламусе. Они выполняют функцию затормаживания релейных специфичных нейронов, переключающих сенсорные пути. Торможение осуществляется по принципу возвратного торможения: релейный нейрон отсылает коллатераль аксона к тормозному нейрону, который и затормаживает релейный нейрон.

 

26. Базальные ганглии строение и  функции

Полосатые тела (corpus striatum) представлены большими клеточными массами в основании больших полушарий мозга. Полосатое тело состоит из хвостатого ядра, перегородки и скорлупы (вместе они составляют неостриатум, филогенетически наиболее новое образование) и бледного шара (палеостриатума - наиболее древней части стриатума). В стриарную систему помимо базальных ганглиев входят структуры, тесно с ними свзяанные: прежде всего, черная субстанция и некоторые ядра таламуса.

Хвостатое ядро и скорлупа связаны анатомически и характеризуются чередованием белого и серого вещества, что оправдывает возникновение термина полосатое тело. Полосатое тело является своеобразным коллектором афферентных входов, идущих к базальным ганглиям. Главными источниками этих входов служат новая кора (преимущественно сенсомоторная), неспецифические ядра таламуса и дофаминэргические пути от черной субстанции.

В противоположность полосатому телу бледный шар состоит из крупных нейронов и является сосредоточением выходных, эфферентных путей стриопаллидарной системы. Аксоны локализованных в бледном шаре нейронов подходят к различным ядрам промежуточного и среднего мозга, в том числе и к красному ядру, где начинается руброспинальный тракт экстрапирамидной системы двигательной регуляции.

Другой важный эфферентный тракт идет от внутреннего отдела бледного шара к передневентральному и вентролатеральному ядрам таламуса, а оттуда продолжается к двигательным областям коры головного мозга. Наличие этого пути обусловливает многозвенную петлеобразную связь между сенсомоторными и двигательными областями коры, которая осуществляется через полосатое тело и бледный шар к таламусу.

 

27. Механизм участия структур стриарной  области в регуляции движений

 

Нейроны полосатого тела участвуют в генерации медленных движений, подвергающихся коррекции со стороны сенсорной обратной связи. По современным представлениям, базальные ганглии являются одним из уровней построенной по иерархическому принципу системы регуляции движений.

Получая информацию от ассоциативных зон коры, базальные ганглии участвуют в создании программы целенаправленных движений с учетом доминирующей мотивации. Далее соответствующая информация от базальных ганглиев поступает в передний таламус, где она интегрируется с информацией, приходящей от мозжечка. Из таламических ядер импульсация достигает двигательной коры, которая отвечает за реализацию программы целенаправленного движения через посредство нижележащих стволовых и спинальных двигательных центров. Так в общих чертах можно представить себе место базальных ганглиев в целостной системе двигательных центров мозга.

При повреждении базальных ганглиев наблюдаются:

  1. Атетоз - медленные червеобразные движения кистей и пальцев рук. Дегенерация клеток стриатума вызывает также другое заболевание - хорею, выражающуюся в судорожных подергиваниях мимических мышц и мускулатуры конечностей, которые наблюдаются в покое и при выполнении произвольных движений. В них обычно вовлекаются руки, менее часто - губы и язык, достаточно редко - шея и ноги. При хорее движения происходят на фоне мышечного гипертонуса; они быстрые, отрывистые в виде перемежающихся нерегулярных движений в непредсказуемой последовательности.
  2. Локальное электрическое раздражение некоторых участков стриатума вызывает у животных так называемые циркуляторные двигательные реакции, характеризующиеся поворотом головы и туловища в сторону, противоположную раздражению. Раздражение других участков полосатого тела, напротив, приводит к торможению двигательных реакций, вызванных различными сенсорными раздражениями.
  3. Дискинез и стереотипное поведение. Дискинез проявляется в виде непроизвольных движений отдельных частей тела. Это наблюдается, например, при хорее (болезнь Гетингтона), гемибаллизме, атетозе. Основной признак: сходство таких движений с нормальными движениями или их фрагментами; все стереотипное поведение состоит из таких законченных единиц.
  4. Синдром Паркинсона связан с повреждением базальных ганглиев и характеризуется комплексом таких симптомов, как акинезия - малая подвижность и затруднения при переходе от покоя к движению; восковидная ригидность, или гипертонус, не зависящий от положения суставов и фазы движения; статический тремор, наиболее выраженный в дистальных отделах конечностей. Все эти симптомы, согласно современным представлениям, обусловлены гиперактивностью базальных ганглиев, которая возникает при повреждении дофаминэргического (по всей вероятности, тормозного) пути, который идет от черной субстанции к полосатому телу. Таким образом, этиология синдрома Паркинсона обусловлена дисфункцией как полосатого тела, так и структур среднего мозга, которые функционально объединены в стриопаллидарную систему.

 

28. Строение ретикулярной формации  ствола мозга

 

Центральная часть заднего мозга от большего затылочного отверстия до таламуса занята сетевидной, или ретикулярной, формацией. Ретикулярная формация, как стержень, проходит через продолговатый мозг. Ретикулярные нейроны и распределяются диффузно, и группируются в ядрах, среди которых можно выделить наиболее крупные: ретикулярное гигантоклеточное, ретикулярное мелкоклеточное, латеральное ретикулярное ядро на уровне продолговатого мозга, каудальное ретикулярное и оральное ретикулярное на уровне моста.

Афферентация:

  1. от температурных и болевых рецепторов через аксоны сенсорных восходящих путей
  2. от сенсорной и некоторых других областей коры
  3. к нейронам ретикулярной формации подходят коллатерали нисходящих моторных трактов, идущих из переднего мозга и от ядер мозжечка

Эфферентация:

  1. в спинной мозг. От нейронов гигантоклеточного и каудального ретикулярного ядра начинается нисходящий ретикулоспинальный тракт, устанавливающий прямые связи с мотонейронами спинного мозга.
  2. к мозжечку
  3. Ретикулярная формация имеет связи с ядрами черепно-мозговых нервов, промежуточным мозгом и через последний - с корой больших полушарий.  То есть к верхним отделам ГМ идут восходящие пути.

Таким образом, богатство связей ретикулярной формации свидетельствует о том, что она является надсегментарной структурой, приспособленной к регуляции деятельности различных отделов центральной нервной системы.

 

29. Основные центры ретикулярной  формации ствола мозга

 

*Центр  дыхания. Состоит из 2 маленьких центров: центра вдоха и центра выдоха, которые работают реципроктно, то есть, тормозят друг друга.

*Сосудодвигательный  центр.

 

30. Строение и работа дыхательного  центра

 

Дыхательный центр, локализованный в медиальной части ретикулярной формации продолговатого мозга. Еще в прошлом столетии было установлено, что повреждение каудальной части дна четвертого желудочка приводит к остановке дыхания (укол Флуранса). Позднее Н. А. Миславский (1885) выделил в дыхательном центре две функционально различные части: инспираторную и экспираторную (или вдыхательную и выдыхательную). В последнее время использование методов микростимуляции и микроэлектродной регистрации активности одиночных нейронов позволило уточнить представления о локализации частей дыхательного центра.

Установлено, что инспираторная часть расположена более вентрально, чем экспираторная. Инспираторные нейроны генерируют потенциалы действия в начальную фазу вдоха, а разряд экспираторных нейронов приурочен к фазе выдоха. Определенная мозаичность в расположении дыхательных нейронов свидетельствует о том, что деление дыхательного центра на две части - вдыхательную и выдыхательную - более справедливо в функциональном смысле, чем в анатомическом.

Отличительной чертой нейронов дыхательного центра является способность к автоматизму. Даже при отсутствии афферентных воздействий активность этих нейронов характеризуется периодичностью, которая определяется спецификой ионных механизмов их клеточной мембраны. Периодичность разрядов дыхательных нейронов может быть обусловлена также наличием взаимных тормозных связей между инспираторными и экспираторными нейронами. Тормозные связи создают реципрокность разрядов дыхательных нейронов, когда появление активности инспираторных нейронов сопровождается торможением разрядов экспираторных и наоборот. В результате реципрокного взаимодействия дыхательных нейронов происходит смена фаз дыхательного цикла.

Информация о работе Шпаргалка по предмету «Физиология Центральной Нервной Системы»