Лекции по "Деревянным конструкциям"

Автор работы: Пользователь скрыл имя, 18 Января 2014 в 10:38, курс лекций

Краткое описание

Область применения конструкций из дерева и пластмассы: 1. В гражданском строительстве (здания павильонного типа: спортивные здания, выставочный павильон, торговые здания, престижные здания; жилищное строительство: жилые дома, коттеджи, мансарды и т.д.). 2. Сельское строительство (животноводческие, птицеводческие здания, складские здания: зерносклады, склады мин. удобрений, различных химических средств, теплиц). 3. Промышленное строительство (здания лёгкого машиностроения; вспомогательные цеха; склады, гаражи).

Вложенные файлы: 1 файл

Лекции по деревянным конструкциям.doc

— 856.50 Кб (Скачать файл)

При расчёте сжато изгибаемых деревянных стержней применяют теорию краевых напряжений, предложенную К.С. Завриевым. В соответствии с этой теорией несущая способность стержня считается исчерпанной в тот момент, когда краевое напряжение сжатия делается равным расчётному сопротивлению сжатию. Эта теория принята в действующих нормах проектирования. Эта теория приближённая, мене точная, чем теория устойчивости, однако, даёт более простое решение, весьма удобна для проектировщиков.

Рассмотрим стержень нагруженный  продольной нагрузкой N и поперечной нагрузкой Q. При расчёте таких элементов не в коем случае нельзя использовать принцип независимости действия сил.

N/F+M/W , т.е. когда суммируют напряжения (нормальные) от действия продольных сил и напряжение от действия изгибающего момента. Потому что наличие одной нагрузки (напряжения) изменяет характер напряжений от действия другой нагрузки. В сечении сжато изгибаемого элемента действуют  продольные сжимающие силы N, от этих сил возникают равномерные напряжения сжатия и изгибающий момент М, от которого появляются сжимающие и растягивающие напряжения, которые максимальны в крайних волокнах и равны нулю на нейтральной оси.

Напряжения сжатия, возникающие  в сечении древесного элемента, складываются на  напряжение сжатия и растяжения – вычитаются. Максимальное сжимающее напряжение возникает в крайних волокнах сечения в месте действия максимального изгибающего момента. Разрушение сжато изгибаемого  элемента начинается с потери устойчивости сжатых волокон, что обнаруживается появлением складок и повышенными прогибами. ∞Такое разрушение частично пластично, т.к. жёсткость стержня не является ∞, то он под влиянием изгибающего момента прогибается. При этом центрально приложенная сжимающая сила, теперь  уже будет иметь эксцентриситет =  деформации стержня от момента. И, таким образом, создаёт дополнительный сжимающий момент. Появление дополнительного момента от нормальной силы увеличивает деформацию стержня,  что приводит к ещё большему возрастанию момента. Такое наращивание дополнительного момента и прогибов будет продолжаться некоторое время и затем  затухнет. В основу метода Завриева положено:

1.Независимо от характера  распределения нагрузки, стержень  всегда изгибается по закону  синусоиды. В действительности  это возможно, если нагрузка распределяется по синусоиде.

2.Стержень работает упруго.

3.Напряжения (опасные) достигают  предела прочности при сжатии.

Вообще, полный прогиб стержня  и уравнение кривой неизвестны, поэтому  непосредственно формулой краевых  напряжений пользоваться нельзя.

(1),

Полный изгибающий момент стержня равен  (2),

В обоих уравнениях есть 3 неизвестных: δс, у, МХ.

Всякую кривую аналитически можно выразить в виде ряда который  при этом должен быть быстросходящимся и удовлетворять краевым значениям. Таким является тригонометрический ряд:

При симметричной загрузке первый член ряда даёт точность 95-97%. Для  упрощения решений считают нагрузку симметричной. Тогда можно ограничится  первым частным ряда

С появлением этого уравнения  мы получаем 4 недостающее неизвестное  f1. Из курса строительной механики видно, что вторая производная уравнения кривой деформирования равная

После дифференцирования  получим: , следовательно .

Если из этого уравнения  выделить МХ и подставить в уравнение МХqy, то после преобразований, имея в виду что и и Ymax=f, то получим следующее выражение:

Найденная зависимость позволяет  решать вопрос об определении напряжения. Для этого значение f1  подставим в выражение:

После преобразования получим: , где

- коэффициент, учитывающий дополнительный  изгибающий момент от продольной  силы при деформации стержня.  Применим при значении от «0»  до «1».

Nкр=φ×RС×Fбр.

Окончательно выражение можно  записать в виде: , где ; , т.к. 0< <1.

Если  =0, то N=φ×F×R=0?

Если  =1, то N=0 – продольной силы нет

Если  ≤0, то (невозможно)

В связи с тем, что значение коэффициента пропорционального изгиба при вычисление значения  всегда определяется по следующей формуле: φ=3000/λ2, то при малых изгибающих напряжениях , , то работа стержня близка к условиям продольного изгиба и формула даст неправильный результат. В этом случае стержень надо рассчитывать на продольный изгиб без учёта изгибающего момента. При определении прогиба сжато изгибаемого элемента надо учитывать влияние дополнительного момента от продольной силы f=f0/ ,

Общая формула

Далее по действующему СНиПу  рекомендуется следующее уточнение. При несимметричном нагружении, нагрузку раскладывают на симметричную и кососимметричную.

 

Далее СНиП рекомендует  домножать коэффициент влияния  продольной силы на изгибающий момент: kН –поправочный коэффициент, зависящий от формы эпюры изгибающего момента.

kНн+ (1-αн), где αн =0,81 –при прямоугольной эпюре, αн =1,22 - при треугольной эпюре.

Этот поправочный коэффициент  даёт уточнение в 5%. Также при  необходимости сжато изгибаемые элементы необходимо проверять на прочность  по скалывающим напряжениям: τ≤Rск;

Сжато изгибаемый элемент должен быть так же проверен на устойчивость плоской  формы деформирования. , где φу-коэффициент продольного изгиба с учётом работы стержня из плоскости, φу =3000/λ2- для гибкости участка элемента расчётной длины lp из плоскости деформирования, φМ-коэффициент продольного изгиба от действия изгибающего момента, FБР - площадь брутто, с максимальными размерами сечения элемента на участке lp, WБР – максимальный момент сопротивления (брутто) на участке lp, n – коэффициент, зависящий от закрепления растянутой зоны из плоскости деформирования n=2 – без закрепления растянутой зоны из плоскости, n= 1 – для элементов имеющих такие закрепления.

28.Расчёт элементов деревянных конструкций на растяжение с изгибом.

Растянуто изгибаемые элементы работают одновременно на растяжение и изгиб. Так работает пояс фермы, в котором  кроме растяжения действует ещё  и изгибающий момент от межузловой нагрузки от веса подвесного перекрытия.

Так же как растянуто  изгибаемый элемент работает как элемент, растягивающие силы в котором действуют с эксцентриситетом относительно оси.

В сечении растянуто изгибаемого  элемента от продольных растягивающих  сил N, возникают равномерные растягивающие напряжения, а от изгибающего момента M - напряжения изгиба, состоящие из сжатия на одной половине сечения и растяжения на другой.

Эти напряжения суммируются с учётом их знака. В результате растягивающие  напряжения увеличиваются, а сжимающие  уменьшаются. Т.к. наибольшие напряжения действуют в крайних растянутых кромках сечения, то здесь и начинается разрушение элемента, от  разрыва растянутых волокон древесины. Т.о. растянутые изгибаемые элементы, кроме изгибающего момента центрально приложенного (внецентренно приложенные) усилия которые растягивают стержень, вызывая выгиб в обратную сторону по сравнению с сжато изгибаемым элементом. После прогиба стержня, вызванного изгибающим моментом, нормальное усилие будет создавать дополнительный момент противоположного знака и т.о. уменьшать основной момент.

Т.к.  на древесные элементы при  растяжении сильно влияют пороки древесины  сильно снижая их прочность. То растянутые изгибаемые элементы рассчитывают запас  прочности без учёта дополнительного  момента от продольных сил при деформации стержня.

,

При определении WНТ ослабления расположенные на участке длиною 20 см. совмещаются в одно сечение. При проверке элемента по 2 предельному состоянию, так же как не учитывается уменьшение прогиба от дополнительного момента.

29.Классификация и  виды соединений.

Соединения элементов деревянных конструкций можно классифицировать по виду, назначению, особенностям конструирования, месту изготовления и др. признакам:

  1. Сплачиванию материалов по высоте и ширине, сращиванию (наращиванию) элементов по длине, соединения элементов под углом.
  2. Заводские соединения, используемые только при изготовлении на заводе. Соединения, применяемые преимущественно в построечных условиях, соединения пригодные как для заводского, так и для построечного изготовления.
  3. соединения неразъёмные и разъёмные для сборно-разборных или складывающихся конструкций (для удобства перевозки).
  4. Соединения без металлических и соединения на металлических крепёжных деталях. При выполнении этих соединений используют следующие крепления:

- разного рода клинья, работающие  преимущественно на сдвиг.

- разнообразные нагели, работающие  на изгиб, соединений работающих  на сдвиг и использующие усилия  распора. Нагели могут быть  цилиндрическими, пластинчатыми, нагельные пластики, гвозди, шурупы глухари.

-врубки и различного рода  лобовые упоры, работающие на  смятие и скалывание.

  1. Клеёные стержни, работающие на выдёргивание или продавливание
  2. Шпонки, работающие на смятие и скалывание. Работа шпонок отличается от работы нагелей тем, что в шпоночных соединениях возникают усилия распоров при включении их в работу, чего нет в нагельных соединениях.
  3. Стяжные болты, тяжи, накладки, хомуты, муфты, работающие как  растянутые или аварийные связи.

 

Соединения элементов конструкции из дерева и пластмассы.

30,31.Требования, предъявляемые к соединениям.

1.Достаточной несущей способности  при ограниченной податливости, измеряемой величиной деформаций при действии на соединение расчётных усилий. Податливость – способность связей (элементов соединений) при деформации конструкции давать возможность соединяемым элементам сдвигаться (деформироваться относительно друг друга).

2.Надёжность, которая определяется  количеством работы затраченной  на разрушение соединений.

3.Долговечность, при заданных условиях эксплуатации (например, долговечность соединений в агрессивных средах).

4.Специфики эксплуатации (если  к конструкции предъявляются  особые требования, например, немагнитность  и радиопрозрачность).

5.Экономичность, которая определяется затратами труда, материалов и энергоёмкость производства.

С учётом этих требований при выборе  средств соединения следует отдавать предпочтение таким соединениям, которые  позволяют изготавливать конструкции  механизированным путём. Просто производить их укрупнительную сборку, обеспечить возможность надёжного контроля за качеством изготовления, поведения в период эксплуатации. Достаточность надёжного контроля за качеством изготовления, поведения в период эксплуатации. Достаточность несущей способности соединения обеспечивается их расчётом в соответствии с указаниями в СНиП  при соблюдении правил  конструирования.

Величины деформаций для различного рода соединений при действии усилий, соответствующих их расчётной способности  оказываются различными и существенно зависит от начальной плотности (наличие зазоров, плотное прикасание рабочих поверхностей). Предпочтение следует отдавать таким креплениям, при постановке которых высокая начальная плотность соединения  обеспечивается сама собой. Этого можно добиться, например, забивкой или пристрелкой связи их вдавливанием в древесину. В случаях, когда высокая начальная плотность не может быть обеспечена (в результате усушки древесины, динамического действия нагрузок) их, как правило, снабжают натяжными устройствами (болты, тяжи, клинья) и т.д. что позволяет ликвидировать появившиеся неплотности и зазоры. При необходимости учесть в расчётной конструкции деформации в соединениях, например, при определении прогибов деревянных ферм и прочее.

СНиП предписывает применять следующие деформации:

-на лобовых врубках [f] торец в торец – 1,5 мм.

- на нагелях всех типов 2,0 мм.

-в примыканиях поперёк волокон  – 3,0 мм.

В клеевых соединениях – 0,0 мм.

Величины этих деформаций соответствуют  максимальной расчётной несущей  способности соединений, при неполном её использовании величину деформации следует принимать пропорцианально действующему на соединениях усилию.

В величинах деформации учтены не только деформации, проявляющиеся в  момент приложения нагрузок, но так  же отражено увеличение деформации под нагрузкой по времени. Так же учтена вероятность недостаточно тщательного выполнения работ.

Информация о работе Лекции по "Деревянным конструкциям"