Автор работы: Пользователь скрыл имя, 22 Июня 2014 в 20:50, курсовая работа
Постоянная необеспеченность ремонтного производства запасными частями является серьезным фактором снижения технической готовности автомобильного парка. Расширение же производства новых запасных частей связано с увеличением материальных и трудовых затрат. Вместе с тем около 75% деталей, выбраковываемых при первом КР автомобилей являются ремонтопригодными либо могут быть использованы вообще без восстановления. Поэтому целесообразной альтернативой расширению производства запасных частей является вторичное использование изношенных деталей, восстанавливаемых в процессе ремонта автомобилей и его агрегатов.
Сварочные и наплавочные работы выполняют на специализированных постах. Здесь ремонтируют сваркой и наплавкой детали.
На этом участке выполняют все виды термической обработки.
После сварки и наплавки детали поступают на слесарно-механический участок. После термической обработки детали контролируют на твердость и глубину поверхностно-закаленного слоя и затем транспортируют на слесарно-механический участок для дальнейшей обработки.
4.2 Расчет и подбор оборудования
Производительность оборудования для сварки (наплавки) деталей равна, дм/ч:
Газовая сварка…….
0, 3-0, 5 (при толщине привариваемого металла 2-6 мм)
Вибрационная наплавка в жидкости:
контактно-искровая….
контактно-дуговая……
9-12 (при толщине слоя 0, 5 - 0, 7 мм)
4, 3-6, 0 (при толщине слоя 2, 0 - 2, 5 мм)
Электродуговая, ручная (сварка и наплавка)…….
3, 6-4, 8 (при толщине слоя 3- 5 мм)
Автоматическая сварка и наплавка под слоем флюса…
7, 2-9, 0 (при толщине слоя 2- 5 мм)
При укрупненных расчетах число постов механизированной сварки и наплавки может быть принято на основе следующих данных. Для авторемонтного завода с годовой производственной программой 2-10 тыс. приведенных капитальных ремонтов грузовых автомобилей:
Остальное оборудование подбирают согласно требованиям технологического процесса.
Ацетиленовый генератор для ручной газовой сварки подбирают по производительности. Средний расход ацетилена ориентировочно можно считать на одного газосварщика (при коэффициенте использования поста К=0,75) 2500-2700 л в течение рабочей смены. Расход кислорода принимают на 20% выше расхода ацетилена. Расход электродов при ручной электродуговой сварке ориентировочно можно принять 2-3% от массы свариваемых деталей.
Таблица 6. Ведомость оборудования сварочно-наплавочного участка
Наименование оборудования
Модель, тип
Краткая техническая характеристика
Количество
Установлен. мощн. КВт
Габарит. размеры мм
Заним. Площадь м2
Един.
Общ
1
2
3
4
5
6
7
8
Прибор для измерения твердости по методу Роквелла
ТР_2
-
1
-
-
500Х300
0, 15
Шахтная электрическая печь сопротивления (для отпуска)
СШЗ_6.6/7
Производительность 170 кг/ч Температура нагрева 700°С
1
-
37, 2
Диаметр 1410
1, 56
Камерная электрическая печь сопротивления
Н_45
Производительность 200 кг/ч Рабочая температура 950 °С
1
45, 0
-
1200Х600
0, 72
Закалочный станок
Размеры обрабатываемых деталей диаметр до 90 мм; длина до 900 мм
1
0, 7 кВ.А
-
1600Х650
1, 04
Однопостовой сварочный преобразователь
ПСГ_500-1
Сила тока 500 А.
1
-
28,0
1100Х600
0, 66
Токарно-винтореэный станок, переоборудованный для наплавки деталей
Высота центров - 250 мм.
Расстояние между центрами - 1000 мм
3
11,0
-
2810Х1180
3, 32
Полуавтомат для сварки в среде углекислого газа
А_547У
Сила тока 270 А. Напряжение 27 В
1
-
17, 0 кВ-А
800Х600
0, 48
Универсальная головка для вибродуговой наплавки
Устанавливается на станке
3
0,4
-
-
-
Однопостовой сварочный трансформатор
СТА_24_У
Сила тока 300 А
1
23, 0 кВ-А
700Х400
0,28
Итого:
-
-
-
-
-
-
14,85
4.3 Расчет площади отделения
При детальной разработке участка площадь определяется по площади пола, занимаемого оборудованием и переходному коэффициенту, учитывающему плотность расстановки оборудования. Площадь отделения:
Fо=?fоб*Коб, (31)
где: ?fоб - суммарная площадь пола, занятая оборудованием, м2;
Коб - коэффициент плотности расстановки оборудования, Коб=4,0;
Fо=14,85*4,0=60 м2
Действительная площадь участка Fо'=60 м2 что отличается от расчетной чем на 20% поэтому площадь участка принимаем равной 60 м2.
4.4 Расчет потребности участка в энергоресурсах
Годовая потребность производственного участка в электроэнергии определяется на основании расчета силовой и осветительной нагрузок.
Расчет годовой потребности в силовой электроэнергии осуществляется по формуле:
Wсил=?Nуст*Фд.о.*Кз*Ксп, (32)
где: ?Nуст - суммарная установленная мощность токоприемников, табл. 6;
Фд.о. - действительный годовой фонд времени работы оборудования, ч;
Кз - коэффициент загрузки оборудования, Кз=0,7;
Ксп - коэффициент спроса, учитывающий неодновременность работы оборудования, Ксп=0,4;
Wсил=10,6*2016*0,7*0,4=5983,5 кВт
Годовой расход электроэнергии для нужд освещения определяется по формуле:
Wосв=?Ri*t*Fi*Ксп, (33)
где: Ri - расход электроэнергии в час, кВт/м2;
t - средняя продолжительность работы электрического освещения в течение года, ч; t=2100 ч;
Fi - площадь освещаемого помещения, м2;
Ксп - коэффициент спроса, принимается Ксп=0,8;
Wосв=0,015*2100*60*0,8=1512 кВт ч.
Суммарная потребность в электроэнергии:
W=5983,5+1512=7495,5 кВт ч.
4.5 Мероприятия по охране труда
Производительность труда при выполнении сварочных и наплавочных работ во многом зависит от организации рабочего места и условии труда рабочих. Рабочие места должны быть оборудованы таким образом, чтобы на них в удобном для работы положении были размещены все необходимые приспособления, инструмент а также обрабатываемые детали. В помещении должны поддерживаться температура 18…20С, относительная влажность 40…60%. Освещенность на рабочем месте 200…500 лк. Электрический инструмент должен быть надежно заземлен и поддерживаться в исправном состоянии. Пользоваться инструментом не по его назначению запрещается.
5. Обоснование и выбор
Разработка компоновочного плана производственного корпуса выполняется на основе принятого технологического процесса ремонта комплекта агрегатов с соблюдением условий технологической взаимосвязи и действующих норм и правил строительного, санитарного и противопожарного проектирования предприятия.
Для специализированного предприятия по ремонту целесообразно применение П-образного движения предметов труда. При П-образном потоке отделения располагаются смежно.
Технологическая схема с П-образным потоком имеет минимальные транспортные пути и дает возможность изолировать разборочно-моечное отделение от других производственных участков. Недостатком схемы является непрямолинейность технологического потока. Но этот недостаток не затрудняет технологический процесс ремонта, поскольку силовой и другие агрегаты имеют достаточно небольшие габариты и не представляется сложности в их транспортировании.
При П-образном потоке здание получается прямоугольной формы и поэтому проще скомпановываются производственные участки.
Компоновочный план производственного корпуса удовлетворяет следующим требованиям:
С целью снижения строительных затрат все участки размещаются в одном здании;
Здание стремится к прямоугольной форме за счет применения П-образного потока, что дает возможность удобного подъезда ко всем производственным участкам;
Расположение участков обеспечивает технологическую последовательность производственного процесса согласно принятой схеме;
Все элементы плана здания соответствуют действующим нормам строительного проектирования, правилам охраны труда и противопожарной безопасности. Все пожароопасные участки (сварочно-наплавочный, гальванический, малярный и др.) отделяются несгораемыми перегородками. Производственные помещения, отделенные перегородками, размещаются у наружных стен, т. к. это значительно облегчает устройство вентиляции, освещения и выполнения самих перегородок;
Количество маршрутов транспортирования деталей минимальное;
Используя технологический расчет предприятия определяется общая площадь здания:
Fзд=Fосн+Fскл+Fвсп, (35)
где: Fосн - площадь участков основного производства, м2; Fосн=297 м2;
Fскл - площадь складов, м2; Fскл=74 м2;
Fвсп - площадь отделений вспомогательного производства, м2;
Fосн+ Fвсп =300 м2;
Fзд=300+74=374 м2
С учетом межцеховых проходов и проездов данная площадь увеличивается на 15%:
Fзд'=Fзд*(0,15+1)=374*1,15=
Выбирается сетка колон соответствующая данной площади. Целесообразно использовать сетку колонн 18х12 м.
Затем размещаются технологические группы производственных участков в соответствии с выбранной П-образной схемой по технологическому процессу.
Список источников
Савич А.С. Проектирование авторемонтных предприятий: учебно-методическое пособие по курсовому и дипломному проектированию. Мн.: БГПА, 1999 - 56 с.
Савич А.С., Казацкий В.А., Ярошевич В.К. Проектирование авторемонтных предприятий: Курсовое и дипломное проектирование. Мн.: БГПА, 2002-255 с.
Апанасенков В.С., Игудесман Я.Е., Савич А.С. Проектирование авторемонтных предприятий. Мн.: Высшая школа, 1978 - 327 с.
Ремонт автомобилей: учебник для автотранспортных техникумов/ С.И. Румянцева. 2_е изд. М.: Транспорт, 1988 - 340 с.
Проектирование авторемонтных предприятий. Справочник инженера-механика. Вереща Ф.П., Абелевич А.А. М.: Транспорт, 1973 - 328 с.
Клебанов Б.В. Проектирование производственных участков авторемонтных предприятий. М.: Транспорт, 1975 - 315 с.
Справочник технолога авторемонтного производства / А.Г. Малышева. М.: Транспорт, 1977 - 298 с.
Оборудование для ремонта автомобилей. Справочник / М.М. Шахнеса. М.: Транспорт, 1978 - 324 с.
Ремонт автомобилей: учебник для ВУЗов / Л.В. Дегтяринского. М.: Транспорт, 1992 - 295 с.
Шадричев В.А. Основы технологии автостроения и ремонта автомобилей. М.: Транспорт, 1976 - 311 с.