Автор работы: Пользователь скрыл имя, 25 Января 2014 в 18:17, курсовая работа
Туннельны диоды могут примкнятся в технике СВЧ, а также во многих импульсных радиоэлектронных устройствах, рассчитанных на высокое быстродействие. Помимо весьма малой инерционности достоинством туннельных диодов является их стойкость к ионизирующему излучению. Малое потребление энерги от источника питания также во многих случаях следует считать достоинством туннельных диодов. К сожелению, эксплутация этих диодов выявила существенный их недостаток.
1. Туннельный эффект……………………………………………………………………………3
2. ПРОЯВЛЕНИЕ В НЕОДНОРОДНЫХ СТРУКТУРАХ, ИСПОЛЬЗОВАНИЕ В УСТРОЙСТВАХ МИКРОЭЛЕКТРОНИКИ
2.1 Контакт металл-металл…………………………………………………………...…………..5
2.2 Структура металл-диэлектрик-металл………….……………………………………………8
2.3 Токоперенос в тонких плёнках………………………………………………………………10
2.4 Туннельный пробой в p-n-переходе…………………………………………………………12
2.5 Эффекты Джозефсона………………………………………………………………………...13
2.6 Эффект Франца-Келдышева………………………………………………………………….15
3 Туннельный диод…..…………………………………………………………………………17
Литература………………………………………………………………………………………….20
МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ
БЕЛАРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ
ИНФОРМАТИКИ И РАДИОЭЛЕКТРОННИКИ
Кафедра химии
Факультет компьютерного проектирования
по курсу: «Физико-химические основы микроэлектроники и технологии РЭС и ЭВС»
на тему:
«ТУННЕЛИРОВАНИЕ В МИКРОЭЛЕКТРОНИКЕ »
Выполнил:
студент гр. 910204
Шпаковский В.А.
Минск 2001 г.
стр.
1. Туннельный эффект…………………………………
2. ПРОЯВЛЕНИЕ В НЕОДНОРОДНЫХ СТРУКТУРАХ, ИСПОЛЬЗОВАНИЕ В УСТРОЙСТВАХ МИКРОЭЛЕКТРОНИКИ
2.1 Контакт металл-металл………………………
2.2 Структура металл-диэлектрик-
2.3 Токоперенос в тонких плёнках……
2.4 Туннельный пробой в p-n-переходе………………………………………………
2.5 Эффекты Джозефсона………………………………
2.6 Эффект Франца-Келдышева…………………
3 Туннельный диод…..………………………………
Литература……………………………………………………
Рассмотрим поведение частицы
при прохождении через
U(x)
E
I II III Совершенно иначе поведение частицы по законам квантовой
0
l
x ля вероятность
того, что частица отразится от потенциального
Рис.1.1 Прохождение частицы барьера и полетит обратно. Во-вторых, при E<U0 имеется ве-
через потенциальный
барьер. роятность
того, что частица проникнет
«сквозь» барьер и ока-
Здесь - волновая функция микрочастицы. Уравнение Шрёдингера для области I и III будет одинаковым. Поэтому ограничимся рассмотрением областей I и II. Итак, уравнение Шрёдингера для области I примет вид:
введя обозначение:
окончательно получим:
Аналогично для области II:
где . Таким образом, мы получили характеристические уравнения, общие решения которых имеют вид:
Слагаемое соответствует волне, распространяющейся в области I в направлении оси х, А1- амплитуда этой волны. Слагаемое соответствует волне, распространяющейся в области I в направлении, противоположном х. Это волна, отражённая от барьера, В1- амплитуда этой волны. Так как вероятность нахождения микрочастицы в том или ином месте пространства пропорциональна квадрату амплитуды волны де Бройля, то отношение представляет собой коэффициент отражения микрочастицы от барьера.
Слагаемое соответствует волне, распространяющейся в области II в направлении х. Квадрат амплитуды этой волны отражает вероятность проникновения микрочастицы в область II. Отношение представляет собой коэффициент прозрачности барьера.
Слагаемое должно соответствовать отражённой волне, распространяющейся в области II. Так как такой волны нет, то В2 следует положить равным нулю.
Для барьера, высота которого U>E, волновой вектор k2 является мнимым. Положим его равным ik, где является действительным числом. Тогда волновые функции и приобретут следующий вид:
Так как , то это значит, что имеется вероятность проникновения микрочастицы на некоторую глубину во вторую область. Эта вероятность пропорциональна квадрату модуля волновой функции :
Наличие этой вероятности делает возможным прохождение микрочастиц сквозь потенциальный барьер конечной толщины l (рис. 1.1). Такое просачивание получило название туннельного эффекта. По формуле (1.11) коэффициент прозрачности такого барьера будет равен:
, (1.12)
где D0 – коэффициент пропорциональности, зависящий от формы барьера. Особенностью туннельного эффекта является то, что при туннельном просачивании сквозь потенциальный барьер энергия микрочастиц не меняется: они покидают барьер с той же энергией, с какой в него входят.
Туннельный эффект играет большую роль в электронных приборах. Он обуславливает протекание таких явлений, как эмиссия электронов под действием сильного поля, прохождение тока через диэлектрические плёнки, пробой p-n перехода; на его основе созданы туннельные диоды, разрабатываются активные плёночные элементы.
2.1 КОНТАКТ МЕТАЛЛ-МЕТАЛЛ
Рассмотрим плотный контакт двух металлов М1 и М2 с разными работами выхода А1 и А2 (рис. 2.1.1).
Рис. 2.1.1 Энергетическая диаграмма контакта двух металлов в начальный момент времени
Вследствие того, что уровень Ферми EF1 в М1 (уровень Ферми это то значение энергии уровня, выше которого значения энергии электрон принимать не может при Т=0 К) находится выше, чем EF2 в М2, соответствующие работы выхода А1<А2. Если Т 0 К, то при контакте металлов между ними начнётся обмен электронами за счёт термоэлектронной эмиссии. При Т=0 К электроны за счёт туннелирования будут переходить из М1 в М2, так как напротив заполненных уровней в М1 будут находиться свободные уровни в М2.
В общем случае поток электронов n12 в первоначальный момент времени будет значительно больше, чем поток n21. При этом из-за оттока электронов М1 будет заряжаться положительно, а М2- отрицательно. Электрон, переходящий из М1 в М2, переносит заряд –q, создавая разность потенциалов на контакте –V. Последующие электроны должны преодолевать возникающий потенциальный барьер –qV, величина которого непрерывно увеличивается с ростом числа перешедших в М2 электронов. Работа, совершаемая электронами по преодолению энергетического барьера –qV, переходит в потенциальную энергию электронов, в результате чего все энергетические уровни в М1 опускаются, а в М2 подымаются (рис. 2.1.2).
A2
EF1
M1
Рис. 2.1.2 Энергетическая диаграмма контакта двух металлов в равновесном состоянии
Этот процесс будет
Величина контактной разности потенциалов составляет от десятых долей вольта до нескольких вольт, но при этом из-за большой концентрации носителей заряда в металлах в создании Vk участвуют всего около одного процента электронов, находящихся на поверхности металла. В результате толщина образующего потенциального барьера очень мала.
Как было сказано выше в первоначальный момент времени при контакте металлов, n12>n21 и соответствующие термоэлектронные токи I1>I2. Для этих токов мы можем записать уравнения термоэлектронной эмиссии:
где А* - постоянная Ричардсона; S –площадь контакта.
После выравнивания уровней Ферми поток I2 останется неизменным, а поток I1 уменьшиться, так как для того, чтобы перейти электрону из М1 в М2 кроме преодоления работы выхода А1 ему необходимо преодолеть разность потенциалов в зазоре Vk. Тогда ток I1 станет равным: