Туннелирование в микроэлектронике

Автор работы: Пользователь скрыл имя, 25 Января 2014 в 18:17, курсовая работа

Краткое описание

Туннельны диоды могут примкнятся в технике СВЧ, а также во многих импульсных радиоэлектронных устройствах, рассчитанных на высокое быстродействие. Помимо весьма малой инерционности достоинством туннельных диодов является их стойкость к ионизирующему излучению. Малое потребление энерги от источника питания также во многих случаях следует считать достоинством туннельных диодов. К сожелению, эксплутация этих диодов выявила существенный их недостаток.

Содержание

1. Туннельный эффект……………………………………………………………………………3
2. ПРОЯВЛЕНИЕ В НЕОДНОРОДНЫХ СТРУКТУРАХ, ИСПОЛЬЗОВАНИЕ В УСТРОЙСТВАХ МИКРОЭЛЕКТРОНИКИ
2.1 Контакт металл-металл…………………………………………………………...…………..5
2.2 Структура металл-диэлектрик-металл………….……………………………………………8
2.3 Токоперенос в тонких плёнках………………………………………………………………10
2.4 Туннельный пробой в p-n-переходе…………………………………………………………12
2.5 Эффекты Джозефсона………………………………………………………………………...13
2.6 Эффект Франца-Келдышева………………………………………………………………….15
3 Туннельный диод…..…………………………………………………………………………17
Литература………………………………………………………………………………………….20

Вложенные файлы: 1 файл

Курсовая работа - Туннелирование в микроэлектронике.doc

— 324.00 Кб (Скачать файл)

                                              .                          (2.1.4)

При равенстве уровней Ферми  двух металлов I1=I2 и результирующий ток через контакт равен нулю. Величину тока, текущего из одного металла в другой в равновесном состоянии, обозначим как Is=I1=I2.

Теперь рассмотрим процессы, происходящие в контакте при пропускании через него внешнего тока. Пусть внешнее поле прикладывается так, что оно складывается с напряжением Vk. Тогда полное напряжение на контакте будет равным V1=Vk+V.

Электронный ток справа налево I2=Is останется неизменным, а ток слева направо уменьшиться, так как высота энергетического барьера для этих электронов увеличится. Уравнение для тока I1 можно записать в виде:

                                              .                     (2.1.5)

Так как Is=I1 в выражении (2.4), то получим:

                                              .                                      (2.1.6)

Результирующий  ток будет направлен справа налево и равен:

                                              .               (2.1.7)

В случае, если внешняя разность потенциалов  приложена в обратном направлении, то ток I1 будет больше, чем I2=Is. В этом случае ток I1 равен:

                                              ,       (2.1.8)

тогда результирующий ток равен:

                                               .              (2.1.9)

Если току и напряжению приписывать  положительный знак, когда они  направлены слева направо, то выражение (2.1.7) для результирующего тока примет такой же вид, как и выражение (2.1.9). Поэтому выражение (2.1.9) называют уравнением вольтамперной характеристики контакта двух металлов.

Из выражения (2.1.9) видно, что контакт  металл-металл обладает выпрямляющим действием. При V>0 ток увеличивается по экспоненте, а при V<0 –уменьшается.

В обычных условиях контакт металл-металл является невыпрямляющим, так как  при плотном контакте, толщина возникающего потенциального барьера –qVk очень мала, и он будет прозрачен для туннельного просачивания электронов. Если же ширина зазора между металлами каким-либо образом увеличится, то туннельный эффект можно исключить и все полученные выводы будут справедливы.

Проблема электрического контакта двух металлов представляется особенно существенной в микроэлектронике. Это обусловлено тем, что в микроэлектронных устройствах используются рабочие напряжения, близкие по величине к контактным разностям потенциалов.   

 

 

 

         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2 СТРУКТУРА  МЕТАЛЛ-ДИЭЛЕКТРИК-МЕТАЛЛ

 

 

Туннельный механизм прохождения электронов сквозь тонкие диэлектрические слои может проявляться и быть преобладающим при малой концентрации носителей тока в плёнке диэлектрика, сравнительно высоких барьерах на поверхности диэлектрика, низких температурах и достаточно малых, толщинах плёнки. Результирующий туннельный ток из одного электрода в другой сквозь диэлектрический слой находится как разность встречных туннельных составляющих токов в направлении х, перпендикулярном плоскости плёнки. Составляющие этой разности определяют интегрированием произведения концентрации электронов в электродах на прозрачность барьера по всем значениям энергии электронов. Полученное таким образом уравнение для туннельного тока имеет вид:

,     (2.2.1)

где n1(Е) и n2(Е)- концентрации электронов с энергиями от Е до Е+dE в первом и втором электродах соответственно; D(Е, py, pz)-  вероятность проникновения электрона с энергией Е сквозь потенциальный барьер (прозрачность барьера), h- постоянная Планка, рy, рz,- компоненты импульса электрона в плоскости, параллельной плоскости плёнки.

Зоммерфельдом А. И Бете Г.  был рассчитан туннельный ток сквозь вакуумный зазор между двумя одинаковыми металлическими электродами (прямоугольный потенциальный барьер). Вольт-амперная характеристика системы при малых напряжениях имеет вид:

,                                       (2.2.2)

и при больших напряжениях (qu> +EF):

                                          ,                                           (2.2.3)

где - высота потенциального барьера; d- ширина зазора; u- приложенное напряжение; m- масса электрона. Из полученных выражений видно, что при малых напряжениях характеристика линейна, а при увеличении напряжения ток резко возрастает.

Однако реальный барьер имеет более сложную форму. Поэтому детальный расчёт вольт-амперной характеристики должен производиться с учётом сил изображения, различия эффективных масс носителей заряда в металле и диэлектрике, а также с учётом пространственного заряда электронов, туннелировавших из металла в зону проводимости диэлектрика, и электронов, попавших на ловушки в диэлектрике. Симмонсом Дж. был предложен метод расчёта туннельного тока для барьера произвольной формы. Он ввёл понятие о барьере средней величины. Этот метод принципиально позволяет вычислить туннельный ток с учётом названных факторов, однако при этом  получаются очень громоздкие выражения. Анализ результатов расчёта по методу Симмонса показывает, что при малых напряжениях вольтамперная характеристика является линейной, а при больших напряжениях переходит в экспоненциальную зависимость. При дальнейшем увеличении напряжения туннельный ток ограничивается пространственным зарядом в диэлектрике. На рис. 2.2.1 показаны расчётные вольт-амперные характеристики с учётом пространственного заряда.

Из рисунка видно, что большой пространственный заряд может сильно ограничивать туннельный ток сквозь слой диэлектрика. Большое количество экспериментальных работ было выполнено по изучению туннельного прохождения электронов сквозь тонкие диэлектрические слои. Плёнки диэлектриков обычно создавались либо термическим окислением металлов, либо распылением в вакууме. Исследованию были подвергнуты плёнки Al2O3, Ta2O5, TiO2, Сu2O, Сu2S, SiO, GeO2, и других соединений. Практически во всех системах наблюдалось качественное совпадение экспериментальных вольт-амперных характеристик с расчётными. В начале имеет место линейное возрастание тока с ростом напряжения, затем оно переходит в экспоненциальное с последующим замедлением роста тока. Последнее обстоятельство, как и предполагалось при теоретическом расчёте, вызвано ловушками в диэлектрических слоях. При соответствующем подборе высоты контактного барьера, эффективной площади структуры, эффективной массы электрона в диэлектрике и других параметров наблюдается количественное совпадение. На рис. 2.2.2 приведена вольт-амперная характеристика туннельного тока сквозь слой А12О3 толщиной d=2,3 нм. Точками показаны экспериментальные результаты, сплошной линией – расчётные. Наблюдаемые в отдельных случаях количественные расхождения в теоритических и экспериментальных результах вызваны, по-видимому, несовершенством структуры и геометрии плёнок.   


j, а/см2

 

                                      101


    2

                                      103



 

                                      10-1  


 

                                      10-5


 

 

                                      10-9    


                                            1                10               100           1000              u, B                  

                                            

Рис. 2.2.1   Расчётные вольт-амперные характеристики туннельного тока:

1 –  без учёта пространственного  заряда;

2 –  с учётом пространственного заряда  подвижных носителей;

3 –  с учётом пространственного заряда  на ловушках при большой их  плотности.                       

 

                                                 j, а/см2 


                                                       1


 

                                                     10-1




                                                     10-2



                                                     10-3


 

 

                                                     10-4


                                                                     0,5     1       1,5     2        u, B          

 

Рис. 2.2.2   Вольт-амперная характеристика туннельного тока сквозь плёнку Al2O3. Точки – экспериментальные данные, сплошная линия – расчёт.

 

 

 

 

 

 

 

 

 

 

2.3  ТОКОПЕРЕНОС  В ТОНКИХ ПЛЁНКАХ

 

Механизм токопереноса в тонких плёнках объясняется либо надбарьерной эмиссией, либо туннелированием через вакуумный зазор, либо туннелированием через ловушки в диэлектрической подложке.

Токоперенос за счёт надбарьерной эмиссии  происходит благодаря переходу электрона  через уменьшенный потенциальный  барьер. Уменьшение потенциального барьера  происходит как результат действия сил зеркального изображения и электрического поля. Более подробно это явление я рассматривать не буду, так как оно выходит за рамки курсового проекта.

Если расстояние между зёрнами  плёнки лежит в пределах 1…5 нм (зерно  – это область в плёнке, где структура кристаллографической решётки симметрична), то для типичного значения работы выхода от 2 до 6 эВ при температурах, не превышающих 300 К, преобладающим механизмом токопереноса будет туннелирование.

При туннелировании полная энергия электрона не меняется. Поэтому, когда электрон переходит из одного зерна в другое, энергия его остаётся прежней (электрон переходит с энергетического уровня первого зерна на энергетический уровень второго, расположенный на такой же высоте). Такой переход возможен, если в зёрнах есть свободные энергетические уровни с соответствующей энергией и, кроме того, в одном из зёрен на этих уровнях имеются электроны (рис. 2.3.1).

 



 




Рис. 2.3.1   Туннелирование при  отсутствии внешнего поля

 

В отсутствие электрического поля количество электронов, переходящих из одного зерна в другое, одинаковы и направленного потока электронов нет. При воздействии на систему электрического поля энергетические уровни зерен сдвигаются (рис. 2.3.2).


 





 

 

Рис. 2.3.2  Туннелирование при наличии  внешнего поля

 

Уровень Ферми первого зерна  смещается относительно уровня Ферми  второго на величину , где u – приложенное напряжение. Следовательно, против заполненных уровней первого зерна окажутся пустые уровни второго зерна. Электроны начнут переходить из первого зерна во второе. Потечёт электрический ток, плотность которого зависит от напряжённости поля. В области сильных полей, когда величина приложенного поля значительно больше значения суммы работы выхода и уровня Ферми, ток экспоненциально зависит от величины, обратной действующему полю. Заметим, что туннельный ток квадратично зависит от температуры.

В металлических плёнках дискретной структуры может быть ещё один туннельный механизм переноса носителей. Это – так называемое активированное туннелирование: носители заряда, термически возбуждённые над электростатическим потенциальным барьером, туннелируют от одной нейтральной частицы к другой. В слабых полях проводимость, определяемая этим механизмом, подчиняется закону Ома и экспоненциально зависит от обратной температуры, размеров зёрен и расстояния между ними. В области сильных полей происходит отклонение от закона Ома, которое сильно зависит от температуры и пропорционально .

Рассмотренные механизмы относились к переносу носителей через свободное  пространство между зёрнами. Однако высота потенциального барьера при туннелировании через вакуум близка к работе выхода металла, а при туннелировании через диэлектрик она много меньше и равна разности работ выхода металла и электронного сродства диэлектрика. Снижение высоты барьера повышает вероятность туннелирования. Кроме того, из-за большой диэлектрической проницаемости подложки энергия активации меньше, чем в вакууме. Таким образом, туннельный ток через подложку должен быть значительным. Проводимость через подложку осуществляется либо прямым туннелированием, либо туннелированием через стабильные энергетические примесные состояния и ловушки.

 

 

 

 

   

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.4 ТУННЕЛЬНЫЙ  ПРОБОЙ  В p-n-ПЕРЕХОДЕ

 

Пробоем называют резкое увеличение тока через переход в области  обратных напряжений, превышающих напряжение, называемое напряжением пробоя.

Информация о работе Туннелирование в микроэлектронике