Автор работы: Пользователь скрыл имя, 25 Января 2014 в 18:17, курсовая работа
Туннельны диоды могут примкнятся в технике СВЧ, а также во многих импульсных радиоэлектронных устройствах, рассчитанных на высокое быстродействие. Помимо весьма малой инерционности достоинством туннельных диодов является их стойкость к ионизирующему излучению. Малое потребление энерги от источника питания также во многих случаях следует считать достоинством туннельных диодов. К сожелению, эксплутация этих диодов выявила существенный их недостаток.
1. Туннельный эффект……………………………………………………………………………3
2. ПРОЯВЛЕНИЕ В НЕОДНОРОДНЫХ СТРУКТУРАХ, ИСПОЛЬЗОВАНИЕ В УСТРОЙСТВАХ МИКРОЭЛЕКТРОНИКИ
2.1 Контакт металл-металл…………………………………………………………...…………..5
2.2 Структура металл-диэлектрик-металл………….……………………………………………8
2.3 Токоперенос в тонких плёнках………………………………………………………………10
2.4 Туннельный пробой в p-n-переходе…………………………………………………………12
2.5 Эффекты Джозефсона………………………………………………………………………...13
2.6 Эффект Франца-Келдышева………………………………………………………………….15
3 Туннельный диод…..…………………………………………………………………………17
Литература………………………………………………………………………………………….20
Туннельный пробой связан с туннельным эффектом – переходом электронов сквозь потенциальный барьер без изменения энергии. Туннельный пробой наблюдается только при очень малой толщине барьера – порядка 10 нм, то есть в переходах между сильнолегированными p- и n- областями (порядка 1018 см-3). На рис.2.4.1 показана энергетическая диаграмма p-n-перехода при обратном напряжении, стрелкой обозначено направление туннельного перехода электрона из валентной зоны p-области в зону проводимости n-области.
p
Ев
ΔЕз (φ0+|U|)
Еп
Еф
Ев
Рис. 2.4.1 Энергетическая диаграмма p-n-перехода при обратном напряжении.
Еп – дно зоны проводимости; Еф – уровень Ферми; Ев – потолок валентной зоны.
Электрон туннелирует из точки 1 в точку 2, он проходит под энергетическим барьером треугольной формы (заштрихованный треугольник с вершинами 1-3), энергия электрона при этом не изменяется.
Туннельные переходы возможны для электронов, энергия которых соответствует интервалу туннелирования ΔЕтун, в котором по обе стороны расположены разрешённые уровни энергии. Высота барьера равна ΔЕз, она, как правило, меньше высоты p-n-перехода, равной q(φ0+|U|). Толщина барьера с ростом обратного напряжения уменьшается, что повышает вероятность туннелирования. Туннельный ток резко увеличивается, так как возрастает интервал туннелирования и число электронов в нём. Туннельный пробой в чистом виде проявляется только при высоких концентрациях примесей (более ), а напряжение пробоя составляет 0-5 В. При повышении температуры ширина запрещённой зоны незначительно уменьшается и напряжение пробоя снижается. Таким образом, температурный коэффициент напряжения туннельного пробоя отрицателен.
2.5 ЭФФЕКТЫ ДЖОЗЕФСОНА
В п. 2.3 рассматривалось туннельное прохождение электронов сквозь тонкие диэлектрические плёнки, помещённые между проводящими электродами. Туннельный ток возникает и между двумя сверхпроводниками, разделёнными тонкой плёнкой. Однако в этом случае при толщине плёнки менее м в системе происходит качественное изменение.
Если сверхпроводящую структуру (рис. 2.5.1) включить в цепь постоянного тока, то через контакт будет протекать ток, однако падение напряжения на контакте будет равно нулю. Этот эффект впервые был открыт в 1962 г. Джозефсоном и получил название стационарного эффекта Джозефсона.
СП СП
Рис. 2.5.1 Сверхпроводящая структура
Этот эффект объясняется тем, что через плёнку туннелируют куперовские пары. Куперовская пара – это два электрона с противоположно направленными спинами. Поэтому спин пары равен нулю, и она представляет собой бозон. Бозоны склонны накапливаться в основном энергетическом состоянии, из которого их сравнительно трудно перевести в возбуждённое состояние. Следовательно, куперовские пары, придя в согласованное движение, остаются в этом состоянии неограниченно долго. Такое согласованное движение пар и есть ток сверхпроводимости.
Между сверхпроводниками в этом случае возможно протекание туннельного тока обычных электронов, однако сверхпроводящий туннельный ток шунтирует его и напряжение на контакте равно нулю. Вольт-амперная характеристика туннельного джозефсоновского перехода показана на рис. 2.5.2.
I
I0 1
0 ξg/q U0 U
Рис. 2.5.2 Вольт-амперная характеристика перехода Джозефсона
Имеется некоторое критическое значение тока – при токах, больших критического значения, происходит скачкообразный переход на ветвь туннелирования обычных электронов. Линией 1 показана вольт-амперная характеристика при туннелировании обычных электронов при Т=0 К. В этом случае туннельный ток обычных электронов начинается лишь при напряжении U=ξg/q. При Т 0 К этот ток протекает начиная с нулевого напряжения (линия 2). Величина критического тока зависит от типа контакта и может достигать 20 мА. Интересным свойством стационарного эффекта Джозесфона является сильная зависимость критического тока от величины магнитного поля: уже при небольших магнитных полях (порядка 10-4 Тл) критический ток обращается в нуль.
Другим интересным проявлением эффекта Джозесфона является генерация контактом переменного электромагнитного поля – нестационарный эффект Джозесфона. Если через контакт пропустить постоянный ток I0>Iкр, то на переходе появится напряжение U0 (рис2.5.2), а во внешней цепи наряду с постоянным током появится переменный ток высокой частоты. Частота колебаний достаточно высока, например при U0=1 мкВ она равна 483,6 МГц.
Кратко поясним появление переменного тока. Известно, что направление и сила туннельного тока определяются следующим соотношением:
где - разность фаз волновых функций, описывающих куперовские пары по обе стороны барьера; - максимальный ток через барьер, пропорциональный площади туннельного перехода и прозрачности барьера.
Соотношение (2.5.1) можно пояснить на модели маятников, связанных слабой пружиной. Связь приводит к тому, что когда колебание одного маятника опережает колебание другого по фазе, то энергия передаётся от первого маятника ко второму. При этом поток энергии достигает максимума при разности фаз равной π/2. Если с опережением колеблется второй маятник, то энергия от него передаётся первому.
В джозефсоновских контактах
от одного проводника к
Подставив это значение в формулу (2.5.1), получим формулу для сверхпроводящей составляющей туннельного тока, текущего через переход:
Как видно из этой формулы, ток будет переменный с частотой 2qU/h. Этим и объясняется генерация джозефсоновским переходом переменного тока.
Из теории поглощения света полупроводниками известно, что если при поглощении полупроводником кванта излучения имеет место возбуждение электронов из валентной зоны в зону проводимости, то такое поглощение называется собственным или фундаментальным. Для возбуждения собственных переходов необходимо, чтобы энергия светового кванта была больше или равна ширины запрещённой зоны полупроводника:
Если полупроводник поместить в электрическое поле, то согласно зонной теории полупроводника, произойдёт наклон энергетических зон полупроводника. В этом случае электрон валентной зоны может туннелировать через треугольный барьер (рис. 2.6.1а).
Зона
проводимости
Eg
Валентная
зона
d
а)
Рис. 2.6.1 Туннелирование электрона
а) без изменения энергии; б) с поглощением фотона
Высота этого барьера равна ширине запрещённой зоны Eg, а его толщина d характеризуется выражением:
где - величина напряжённости электрического поля. Как видно, с увеличением величины электрического поля толщина барьера уменьшается, а, следовательно, исходя из формулы (1.12), где d=l, увеличивается вероятность туннелирования.
В присутствии электрического поля участие фотона с энергией hν, как видно из рис. 2.6.1б, эквивалентно уменьшению толщины барьера до величины:
и туннельный переход становится ещё более вероятным. Уменьшение толщины барьера равносильно уменьшению ширины запрещённой зоны в сильном электрическом поле. Эффект туннелирования в присутствии электрического поля, сопровождаемый поглощением фотона, называется эффектом Франца Келдыша. В собственном полупроводнике он проявляется как сдвиг края полосы собственного поглощения в сторону меньших энергий. На рис. 2.6.2 показано изменение края полосы поглощения для GaAs при разной напряжённости поля.
Рис. 2.6.2 Край поглощения GaAs при разной напряжённости электрического поля;
Сплошная линия -