Автор работы: Пользователь скрыл имя, 20 Марта 2013 в 19:32, реферат
Проблема утомления считается актуальной общебиологической проблемой, представляет большой теоретический интерес и имеет важное практическое значение для деятельности человека в труде и спорте (Сеченов И.М.; Павлов И.П.; Ухтомский А.А.; Фольборт Г.В., Хилл А.В., 1951; Розенблат В.В., 1975; Моногаров В.Д., 1986, и др.)
Первую попытку решения проблемы утомления предпринял Г. Галилей (1564-1642 гг.), который столкнулся с этим явлением, анализируя механику работы мышц при подъёме тела по лестнице и при ходьбе. По его мнению, в разбираемом случае мышцы утомляются в связи с тем, что им приходиться перемещать не только их собственный вес, но и вес остального тела. В противоположность этому сердце имеет дело только с собственным весом, и оно неутомимо.
Как известно запасы АТФ в мышцах незначительны, их едва хватает на 1 с напряженной мышечной работы. Запасов КФ, используемого для ресинтеза АТФ при работе максимальной интенсивности, хватает всего на 6-8 с (Мищенко B.C., 1990). Снижение скорости ресинтеза АТФ может явиться причиной наступающего утомления.
В скелетной мышце человека после максимальной кратковременной работы до отказа концентрация КФ падает почти до нуля, а концентрация АТФ - примерно до 60-70% значения в состоянии покоя.
В состоянии утомления снижается концентрация АТФ в нервных клетках и нарушается синтез ацетилхолина в синаптических образованиях, в результате чего нарушается деятельность ЦНС по формированию двигательных импульсов и передаче их к работающим мышцам; замедляется скорость переработки сигналов, поступающих от проприо- и хеморецепторов; в моторных центрах развивается охранительное торможение, связанное с образованием гамма-аминомасляной кислоты (Меньшиков В.В., Волков Н.И., 1986; Мищенко B.C., 1990).
При утомлении в процессе выполнения физических нагрузок угнетается деятельность желез внутренней секреции, что ведёт к уменьшению выработки гормонов и снижению активности ряда ферментов. Прежде всего, это сказывается на миофибриллярной АТФ-азе, контролирующей преобразование химической энергии в механическую работу. При снижении скорости расщепления АТФ в миофибриллах автоматически уменьшается и мощность выполняемой работы. В состоянии утомления уменьшается активность ферментов аэробного окисления и нарушается сопряжение реакций окисления с ресинтезом АТФ. Для поддержания необходимого уровня АТФ происходит вторичное усиление гликолиза, сопровождающееся за-кислением внутренних сред и нарушением гомеостаза. Усиливающийся катаболизм белковых соединений сопровождается повышением содержания мочевины в крови.
Максимальная физическая нагрузка большой длительности приводит организм спортсмена к увеличению продуцирования в мышечных клетках молочной кислоты, диффундирующей затем в крови и вызывающей изменения кислотно-щелочного равновесия. Снижение рН внутренней среды влияет на активность ряда ферментов, которая бывает наивысшей в слабощелочной среде (рН = 7,35 - 7,40). Снижение рН в процессе физической нагрузки максимальной и субмаксимальной интенсивности приводит к уменьшению активности многих ферментов, в частности фосфофруктокиназы, АТФ-азы. У спортсменов величина рН может составлять 6,9 и ниже (после нагрузки высокой интенсивности в течение 40-60 с) (Osnes J.-B., Hermansen L, 1997).
Если в прошлые десятилетия
в научно-методической литературе рассматривались
преимущественно
Тренировочная и соревновательная деятельность спортсмена включает в себя выполнение упражнений различной мощности и продолжительности, циклических и ациклических, и т.д. При этом, естественно, возможно проявление различных механизмов и локализации утомления, показанные в табл. 4 (Коц Я.М., 1986; Меньшиков В.В., Волков Н.И., 1986; Мищенко B.C., 1990).
Научные исследования показали, что важное значение в определении функционального состояния спортсменов играют показатели активности симпато-адреналовой системы (САС). Являясь интегральным нейро-гормональным индикатором, характеризующим стрессовую и эмоциональную реакцию спортсменов в ответ на тренировочные и соревновательные нагрузки, эта система играет важнейшую гомеостатическую и адаптационно-трофическую роль в организме. Её можно использовать для оценки текущего состояния, эмоционального напряжения, в предстартовом периоде и на соревнованиях, развития утомления и адаптационных процессов в организме (Кассиль К.Н., 1976; Кассиль Г.Н., 1978; МищуковМ.С., ГалимовСД., 1980).
В исследовании В. В. Мехрикадзе (1985) было показано, что при кратковременной интенсивной нагрузке(тренировке, направленной на увеличение скорости бега) по сравнению с предтренировочным фоном наблюдалась достоверная активация гормонального и медиаторного звеньев САС. Было отмечено повышенное выделение адреналина (в 3 раза), норадреналина (в 1,5 раза), однако резервные возможности системы, оцениваемые по экскреции ДОФА, существенно не изменялись.
При длительной напряженной тренировочной нагрузке (30-60 с), направленной на совершенствование скоростной выносливости, наблюдалось достоверное увеличение активности звеньев САС. Так, экскреция адреналина и норадреналина по сравнению с фоном возрастала почти в 3 раза и дофамина более чем в 2 раза. Такая реакция САС на длительную нагрузку является положительной.
Таким образом, у спринтеров при
нагрузке скоростной направленности САС
преимущественно реагирует
Таблица 4. Характеристика зон мощности в процессе выполнения физических упражнений
Характеристика |
Виды упражнений |
Максимальной анаэробной (анаэробной) Утомление связано прежде всего с кислородно-транспортной системой, лимитирующей работоспособность. Энергообеспечение осуществляется за счет фосфагенной энергетической системы (АТФ+КФ) при некотором участии лактацидной (гликолитической) системы. "Средняя" лёгочная вентиляция не превышает 20-30% от максимальной. ЧСС повышается ещё до старта - 140-150, а после финиша - 160-180 уд/мин. Концентрация лактата в крови после работы составляет 5-8 ммоль/л. Перед выполнением упражнений несколько повышается концентрация глюкозы в крови. До и в процессе выполнения упражнений в крови повышается концентрация катехоламинов и гормона роста, снижается концентрация инсулина. Кислородный запрос может составлять 7-14 л, а кислородный долг- 6-12 л, то есть 90-95% от кислородного долга |
Бег на 100 м, спринтерская велогонка на треке, плавание и ныряние на дистанцию до 50 м. Продолжительность - до 30 с |
Околомаксимальной анаэробной (смешанной) Утомление связано прежде всего с кислородно-транспортной системой, лимитирующей работоспособность. Предстартовое повышение ЧСС - до 150-160, после финиша пульс достигает 180-190 уд/мин. В процессе выполнения упражнений легочная вентиляция растёт и к завершению достигает 50-60% от максимальной рабочей вентиляции для данного спортсмена (60-80 л/мин.). Возрастает скорость потребления O2 и достигает 70-80% от индивидуального МПК. Концентрация лактата в крови после упражнения высокая - до 15 ммоль/л. Она тем выше, чем больше дистанция и выше квалификация спортсмена. Концентрация глюкозы повышена - до 100-120 мг% |
Бег на 200-400 м, плавание на дистанциях до 100 м, бег на коньках на 500 м. Продолжительность от -20 до 50 с |
Субмаксимальной анаэробной. В развитии утомления определяющим фактором является недостаточное снабжение мышц кислородом (энергетическое обеспечение идёт за счёт анаэробного гликолиза). Кислородный запрос может достигать 20-40 л, а уровень энергетических затрат в 4-5 раз превышает максимум аэробного производства энергии. ЧСС, сердечный выброс, лёгочная вентиляция могут быть близки к максимальным значениям для конкретного спортсмена. Концентрация лактата в рабочих мышцах и крови - до 20-25 ммоль/л. Соответственно рН крови снижается до 7,0. Повышается глюкоза в крови - до 1 50 мг%. Высоко содержание в плазме крови катехоламинов и гормона роста. Под влиянием продуктов анаэробного распада меняется проницаемость клеточных мембран для белков, увеличивается их содержание в крови, они могут выходить в мочу, где их концентрация достигает 1 ,5%. |
Бег на 800 м, плавание на 200 м, бег на коньках на 1000 и 1500 м, заезды на 1 км в велоспорте (трек). Продолжительность - от 1 до 2 мин |
Несмотря на большое внимание к проблеме утомления, имеющей важное прикладное значение, в том числе и для достижения высоких спортивных результатов, эта проблема, по мнению многих специалистов, далека от своего окончательного решения.
В заключение следует подчеркнуть, что напряженная и длительная физическая нагрузка обязательно сопровождается той или иной степенью утомления, которое, в свою очередь, вызывает процессы восстановления, стимулирует адаптационные перестройки в организме. Соотношение утомления и восстановления и есть, по существу, физиологическая основа процесса спортивной тренировки.
1.2. Течение восстановительных
процессов в организме
Тренировочные занятия являются основной структурной единицей тренировочного процесса. Рациональное планирование их на основе научных знаний о механизмах развития и компенсации утомления, а также динамики протекания восстановления при выполнении различных тренировочных нагрузок во многом определяет эффективность всего процесса тренировки.
Ещё И. П. Павловым были вскрыты ряд
закономерностей течения
1. В работающем органе наряду с процессами разрушения и истощения происходит процесс восстановления, он наблюдается не только после окончания работы, но уже и в процессе деятельности.
2. Взаимоотношения истощения и
восстановления определяются
3. Восстановление
Наиболее ранние наблюдения, касающиеся
восстановительных процессов
Взгляды И.П. Павлова развил его ученик Ю. В. Фольборт (1951), который заключил, что повторные физические нагрузки могут вести к развитию двух противоположных состояний:
если каждая последующая нагрузка
приходится на ту фазу восстановления,
в которой организм достиг исходного
состояния, то развивается состояние
тренированности, возрастают функциональные
возможности организма; если же работоспособность
ещё не вернулась к исходному
состоянию, то новая нагрузка вызывает
противоположный процесс - хроническое
истощение. Постепенное исчезновение
явлений утомления, возвращение
функционального статуса
В зависимости от общей направленности биохимиче
Отличительной особенностью протекания
восстановительных процессов
Подобная тенденция
Данные, изложенные в табл. 5, свидетельствуют
о процессах восстановления, которые
протекают с различной
Таблица 5. Время, необходимое
для завершения восстановления различных
биохимических процессов в
Процессы |
Время восстановления |
Восстановление О2 – запасов в организме |
10-15с |
Восстановление алактатных анаэробных резервов в мышцах |
2-5мин |
Оплата алактатного О2 - долга |
3-5 мин |
Устранение молочной кислоты |
0,5-1,5ч |
Оплата лактатного О2 - долга |
0,5-1, 5ч |
Ресинтез внутримышечных запасов гликогена |
12-48ч |
Восстановление запасов гликогена в печени |
12-48ч |
Усиление индуктивного синтеза ферментных и структурных белков |
12-72ч |
Интенсивность протекания восстановительных процессов и сроки восполнения энергетических запасов организма зависят от интенсивности их расходования во время выполнения упражнения (правило В.А. Энгельгартда). Интенсификация процессов восстановления приводит к тому, что в определенный момент отдыха после работы запасы энергетических веществ превышают их дорабочий уровень. Это явление получило название суперкомпенсации, или сверхвосстановления. Протяженность фазы суперкомпенсации во времени зависит от общей продолжительности выполнения работы и глубины вызываемых ею биохимических сдвигов в организме.
Важным фактором, определяющим характер восстановительных процессов, является возраст. Ряд исследователей считают, что у детей восстановительный период после определенных мышечных нагрузок короче, чем у взрослых (Волков В.М., 1972).
Некоторые авторы после проведения
функциональных проб не установили достоверных
различий в продолжительности
Информация о работе Характеристика процессов утомления и восстановления в спорте