Характеристика процессов утомления и восстановления в спорте

Автор работы: Пользователь скрыл имя, 20 Марта 2013 в 19:32, реферат

Краткое описание

Проблема утомления считается актуальной общебиологической проблемой, представляет большой теоретический интерес и имеет важное практическое значение для деятельности человека в труде и спорте (Сеченов И.М.; Павлов И.П.; Ухтомский А.А.; Фольборт Г.В., Хилл А.В., 1951; Розенблат В.В., 1975; Моногаров В.Д., 1986, и др.)
Первую попытку решения проблемы утомления предпринял Г. Галилей (1564-1642 гг.), который столкнулся с этим явлением, анализируя механику работы мышц при подъёме тела по лестнице и при ходьбе. По его мнению, в разбираемом случае мышцы утомляются в связи с тем, что им приходиться перемещать не только их собственный вес, но и вес остального тела. В противоположность этому сердце имеет дело только с собственным весом, и оно неутомимо.

Вложенные файлы: 1 файл

Доклад физиология и анатомия.docx

— 68.57 Кб (Скачать файл)

Следует отметить, что для понимания  природы восстановительных процессов  важны представления о следовых изменениях после тренировочных  нагрузок. В связи с этим многие исследователи пытались заменить термин "восстановление" понятием "следовой процесс", или "последействие" (Волков В.М., 1972).

В первых работах, посвящённых анализу  последействия напряжённых тренировочных  занятий и соревнований, в основном рассматривались изменения состава  крови. Так, были установлены фазный характер миогенного лейкоцитоза и значительная его продолжительность. В более поздних исследованиях крови отмечается, что период восстановления картины крови у спортсменов продолжается 3-5 дней, а по некоторым данным 5-7 дней. В исследованиях В. П. Филина (1951) показано, что через 24часа после скоростных и скоростно-силовых упражнений реакция пульса, артериального давления, а также показатели ЭКГ в ответ на дополнительную нагрузку соответствовали исходным данным.

Время восстановления максимального  потребления кислорода (МПК) зависит  от уровня тренированности и объёма предшествующей работы (Гиппенрейтер Б.С., 1966). В исследованиях М. Я. Горкина с соавт. (1973) по данным внешнего дыхания, силы мышц, морфологических показателей крови и других параметров делаются вывод, что установление высоких спортивных результатов возможно при повторении больших нагрузок в период повышенной работоспособности. Указывается, что показателями полного возврата организма к исходному уровню надо считать восстановление наиболее поздно нормализующихся функций. Подобные представления ориентируют на использование больших тренировочных нагрузок не чаще одного раза в 5-7 дней.

В процессе выполнения тренировочных  нагрузок расходуются кислородный  запас организма, фосфагены (АТФ и КФ), углеводы (гликоген мышц и печени, глюкозы крови) и жиры. После работы происходит их постепенное восстановление (Коц Я.М., 1986; Мищенко B.C., 1990).

Уже через несколько секунд после  прекращения работы кислородные "запасы" в мышцах и крови восстанавливаются. Парциальное напряжение кислорода  в альвеолярном воздухе и в  артериальной крови не только достигает  предрабочего уровня, но и превышает его. Быстро восстанавливается также содержание кислорода в венозной крови, оттекающей от работавших мышц и других активных органов и тканей тела, что указывает на достаточное их обеспечение кислородом в послерабочий период (Коц Я.М., 1986; Мищенко B.C., 1990).

Восстановление фосфагенов, особенно АТФ, протекает очень быстро (Коц Я.М., 1986; Мищенко B.C., 1990). Известно, что запасы АТФ мышцы составляют около 5 ммоль х кг, а запасы КФ - около 20 ммоль х кг. Скорость гидролиза АТФ актомиозином равна приблизительно 3 ммоль КФ в секунду на 1 кг мышечной массы. Уже на протяжение 30 с после прекращения работы восстанавливается до 70 % израсходованных фосфагенов. а их полное восполнение заканчивается за несколько минут, причём почти исключительно за счет энергии аэробного метаболизма, т. е. благодаря кислороду, потребляемому в быстрой фазе восполнения кислородного долга. Чем больше расход фосфагенов за время работы, тем больше требуется кислорода для их восстановления (для восстановления 1 моля АТФ необходимо 3,45 О?).

Восстановление АТФ зависит  в основном от скорости, с которой  актомиозин использует АТФ. Это определяет мощность процесса. Продолжительность  такой нагрузки ограничена содержанием  КФ в мышце.

В работе Р. Маргариа с соавт. (1969) было показано, что при интенсивных кратковременных нагрузках в пределах 4-15 с накопления лактата в крови не происходит, так как анаэробный гликолиз при такой работе не участвует в образовании энергии. Затем были получены данные о том, что анаэробный гликолиз включается даже при нагрузке такой длительности. Оказалось, что функции гликолиза заключаются не только в восстановлении АТФ (или, скорее, КФ) после интенсивного мышечного сокращения. При увеличении числа и длительности таких сокращений АТФ, ресинтезированная гликолизом, может быть непосредственно использована актомиозином. Однако скорость синтеза АТФ в результате гликолиза невысока. Это во многом объясняет ограничение возможности спортсмена поддерживать свою максимальную скорость на протяжении дистанции бега на 100 м или сходной с ними дистанции в других видах спорта (Мищенко B.C., 1990).

Специальные лабораторные исследования с использованием биопсии в условиях нагрузки максимальной интенсивности  на велоэргометре, моделирующей спринтерскую дистанцию, показали, что гликолитические процессы активизируются уже через 6 с такой нагрузки (Boobis L, Broors S., 1987).

Расчёты показывают, что в беге на 100 м энергия для первых 4-6 с  бега образуется в системе АТФ-КФ. Последние же 3-4 с бега резко активизируются реакцией гликолиза. Уменьшение скорости бега квалифицированных спринтеров начинается тогда, когда истощаются запасы высокоэнергетических фосфатов и большая часть энергии начинает поступать за счёт энергии гликолиза (Hirvonen J., RehunenS., Rusko H., 1987). Более быстрые спортсмены характеризуются способностью использовать АТФ-КФ уже в начале спринтерской работы.

Специальные исследования (Costill D., 1985) показали, что после спринтерского бега концентрация лактата и пирувата в широкой мышце бедра увеличивается в 19-26 раз. Имеет место сразу после бега значительное снижение содержания КФ в мышце (на 64%), а также АТФ (на 37%).

Специальная спринтерская тренировка в течение 8 недель приводит к увеличению скорости анаэробного образования  АТФ. Это увеличение (по расчётам прироста концентрации лактата и пирувата в мышце под влиянием тренировки) составляет около 20% (табл. 6).

Таблица 6. Изменение мышечных метаболитов гликогена мышц в  широкой мышце бедра (ммоль х кг') при "длинном" спринте (30 с) под влиянием спринтерской тренировки (Boobis L.H., Broors S., 1987)

Показатели

До тренировки

После тренировки

 

В покое

После работы

В покое

После работы

Гликоген

КФ

АТФ

Пируват

Лактат

310±42

85,1 ±9

26.5 ±3

0,9 ±0,6

3,9+1

214,5±46

28,0 ±11,0

19,2± 10

3,8 ±1,6

86,0 ± 26

346,1 ±56

84,6 ±4,8

24,0 ± 2.5

1,0 ±0.4

4,7±3,1

256,1 ±38

25,5 ±7

17,0±5,6

3,9 ±1,6

103,6 ±24,6


Как видно из табл. 6, спринтерская тренировка не влияла на содержание АТФ  и КФ в покое. Однако степень их исчерпания после 30-секундного спринта  несколько увеличилась, на этом фоне повышалась концентрация лактата в мышцах и артериальной крови. Следует отметить, что значительный анаэробный гликолиз имеет место и при более коротких (ниже 15 с) спринтерских нагрузках максимальной интенсивности (Hirche Н., 1973; Hirvonen J., Rehunen S., Rusko H., 1987; Мищенко B.C., 1990).

Так, у группы спортсменов при  лабораторной (7 с) и естественной беговой  нагрузке (50 м - 6,2 с) отмечалось увеличение концентрации лактата в крови до 3,7 и 6,8 ммоль х л-1 соответственно. При беге на 100 м (за 11,6 с) концентрация лактата повышается в среднем до 8,9 ммоль х л-1 Максимальная концентрация у спортсменов данной группы при средней длительности предельной лабораторной нагрузки 52с составила 13,1 ±2,4 ммоль хл-1. Таким образом, при беге на 100 м концентрация лактата составляет 68% от индивидуальной максимальной.

В табл. 7 даётся определенное представление  о степени участия анаэробного  гликолиза на спринтерских дистанциях.

Таблица 7. Максимальная концентрация лактата в артериальной крови в беге на короткие дистанции (п = 12)

Дистанция м

Спортивный результат, с

Лактат, ммоль х л1

40

 

4,5 ±0,2

50

6,2 ±0,2

6,8 ± 1,6

100

11,3 ±0,3

8,9 ± 1,3

100

10,8±0,1

8,1 ±0,8

200

22,8 ±0,4

15,1 ± 1,8

400

50,9 ±0,6

16,2 ±2,3


В беге на короткие дистанции в  отдельных случаях отмечены высокие  величины концентрации лактата в крови. Так, L. Herrmansen (1977) зафиксировал после бега на 100 м с результатом 10,5 с уровень лактата крови 16,7 ммоль х л-1. Однако обычно уровень концентрации лактата в этом случае составляет 8-9 ммоль х л-1, а скорость аккумуляции лактата около 0,60 ммоль х л-1х Л-1 (Hirvonen J., Rehunen S., Rusko H., 1987).

Острая работа спринтера быстро проходит, его спортивная работоспособность  восстанавливается в течение 1,5-2 ч, показателем чего может служить  возможность повторений той же дистанции  с тем же техническим результатом. Утомление марафонца, лыжника или  пловца после преодоления сверхдлинных дистанций снижает их работоспособность  на несколько суток. В некоторых  случаях, особенно при недостаточной  подготовке, подобные нагрузки приводят к резким расстройствам жизнедеятельности.

По первоначальным представлениям Р. Маргария (1969), израсходованный во время выполнения тренировочной нагрузки гликоген ресинтезируется из молочной кислоты на протяжении 1-2 ч после тренировки. Расходуемый в этот период восстановления кислород определяет вторую (медленную, или лактатную) фракцию кислородного долга. Однако в настоящее время установлено, что восстановление гликогена в мышцах может длиться до 2-3 дней.

В период восстановления происходит устранение кислоты из рабочих мышц, крови и тканевой жидкости. Если после такой нагрузки выполняется  лёгкая работа (активное восстановление), то устранение молочной кислоты происходит значительно быстрее (Коц Я.М., 1986).

Наибольшая интенсивность восстановительных  процессов наблюдается сразу  по окончании работы, а затем она  постепенно понижается. Логично предположить, что применить средства, способствующие ускорению восстановительных процессов, целесообразнее в тот момент, когда  скорость их естественного протекания замедляется.

По мнению В. М. Дьячкова (1977), на протекание восстановительных процессов оказывают положительное влияние упражнения умеренной интенсивности с ритмическим чередованием напряжения и расслабления мышц: медленный бег по мягкому грунту, непродолжительное плавание в тёплой воде, упражнения малой интенсивности игрового характера.

Быстрота восстановительных процессов, чувствительность к некоторым средствам  восстановления связана с индивидуальными  особенностями организма спортсмена. Так, известны индивидуальные различия и способности к восстановлению при одинаковом уровне тренированности. Некоторые спортсмены даже в состоянии  хорошей тренированности относительно медленно восстанавливаются (Гиппенрейтер Б.С., 1966; Аванесов В.У, Талышев Ф.М., 1974; Волков В.М., 1977; Буровых А.Н., 1982; Моногаров В.Д., 1986, и др.).

Говоря о восстановлении после  тренировочных нагрузок, нельзя не отметить его связь со спецификой мышечной деятельности. Различные виды спорта, в том числе лёгкой атлетики (а их свыше 40) оказывают неодинаковое влияние на энергообмен, деятельность отдельных органов и систем, различные звенья двигательного аппарата, характер регуляции взаимодействия функций. Поэтому при оценке последействия тренировочных занятий важно избирательно проанализировать следовые изменения в зависимости от вида спорта, характера тренировочного занятия и т.д.

1.3. Использование средств  восстановления в системе спортивной  тренировки

Среди различных факторов, способствующих повышению спортивной работоспособности, важную роль играет увеличение объёма и интенсивности тренировочных  нагрузок (Матвеев Л.П., 1991). Однако повышение как объёма, так и интенсивности тренировочных нагрузок имеет свои физиологические пределы. По мнению специалистов во многих видах спорта спортсмены достигли близких к предельным параметрам тренировочных нагрузок. Спортсмены в течение весьма продолжительных периодов тренируются почти на пределе своих функциональных возможностей, балансируя между столь желанной высшей спортивной формой и опасностью перенапряжения систем организма и возникновения патологических явлений, вызванных большой нагрузкой. В связи с этим первостепенное значение имеет активное воздействие на процессы восстановления после физических нагрузок путём естественного их стимулирования (Гиппенрейтер Б.С., 1966; Бирюков А.А., Кафаров К.А., 1968; Волков В.М., 1972; Граевская Н.Д., Иоффе Л.А., 1973; Аванесов В.У., 1973; Розенблат В.В., 1975; Дьячков В.М., 1977, Буровых А.Н., 1<978; Моногаров В.Д., 1986; Граевская Н.Д., 1987; Зотов В.П., 1990, и др.).

В настоящее время уже ни у  кого не вызывает сомнения то, что восстановление - неотъемлемая часть тренировочного процесса, не менее важная, чем сама тренировка. Поэтому практическое использование  различных восстановительных средств в системе подготовки спортсменов - важный резерв для дальнейшего повышения эффективности тренировки, достижения высокого уровня подготовленности. По мнению специалистов, создание адекватных условий для протекания восстановительных и специальных адаптационных процессов может осуществляться в двух направлениях:

  • оптимизации планирования учебно-тренировочного процесса;
  • направленно-целевом применении средств восстановления работоспособности (Матвеев Л.П., 1965; ВируА.А., 1975; Куколевский Г.М., 1980; Платонов В.Н., 1984, 1997; Луговцев В.П., 1988; Зотов В.П., 1990, и др.).

В спортивной практике различают два  наиболее важных направления использования  восстановительных средств. Первое предусматривает использование  восстановительных средств в период соревнований для направленного воздействия на процессы восстановления не только после выступления спортсмена, но и в процессе их проведения, перед началом следующего круга соревнований. Второе направление включает использование средств восстановления в повседневном учебно-тренировочном процессе. При этом следует учитывать, что восстановительные средства сами по себе нередко служат дополнительной физической нагрузкой, усиливающей воздействие на организм.

К настоящему времени спортивной наукой и передовой практикой накоплен богатый материал по проблеме использования  средств восстановления: дана классификация  восстановительных средств, обоснованы основные принципы их использования, апробированы многие средства восстановления и их комплексы в отдельных видах  спорта.

В практике наиболее часто используется деление восстановительных средств  на три основные группы, комплексное  использование которых и составляет систему восстановления:

  • педагогические;
  • медико-биологические;
  • психологические.

Педагогические средства можно  считать наиболее действенными, поскольку, какие бы эффективные медико-биологические  и психологические не применяли, они могут рассматриваться только как вспомогательные, содействующие  ускорению восстановления и повышению  спортивных результатов только при  рациональном построении тренировки. Для достижения адекватного возможностям организма тренировочного эффекта  необходимо:

Информация о работе Характеристика процессов утомления и восстановления в спорте