Автор работы: Пользователь скрыл имя, 30 Сентября 2013 в 20:34, курсовая работа
Хранение картофеля не только завершающий этап сельскохозяйственного производства, но и его начало. От условий хранения семенного картофеля в значительной мере зависит величина и качество будущего урожая. В настоящее время значительно возросли объёмы картофеля, идущего на промышленную переработку, где требуется своя специфика, связанная с технологией производства. Требует внимания также вопрос хранения полученного урожая в личном подсобном хозяйстве.
В последние годы достигнуты заметные успехи в организации хранения картофеля, однако потери всё ещё остаются достаточно большими, и качество клубней при этом заметно ухудшается. В наше время успешное хранение продукции возможно лишь на основе правильного представления о биохимических процессах, происходящих в клубнях на протяжении всего периода хранения.
Введение
Хранение картофеля не только завершающий этап сельскохозяйственного производства, но и его начало. От условий хранения семенного картофеля в значительной мере зависит величина и качество будущего урожая. В настоящее время значительно возросли объёмы картофеля, идущего на промышленную переработку, где требуется своя специфика, связанная с технологией производства. Требует внимания также вопрос хранения полученного урожая в личном подсобном хозяйстве.
В последние годы достигнуты заметные успехи в организации хранения картофеля, однако потери всё ещё остаются достаточно большими, и качество клубней при этом заметно ухудшается. В наше время успешное хранение продукции возможно лишь на основе правильного представления о биохимических процессах, происходящих в клубнях на протяжении всего периода хранения.
Необходимы более совершенные
методы хранения, основанные на использовании
активной вентиляции с применением
автоматического управления, физиологически
активных веществ и др. Использование
этих и некоторых других методов
позволяет управлять физиолого-
Одним из современных способов продления сроков хранения картофеля является обработка его антисептическими препаратами.
Поэтому в данной работе
изучалось влияние обработки
различными антисептическими препаратами
на хранение картофеля.
1 Физиологические и биохимические процессы, протекающие в картофеле при хранении
Рассмотрим химический состав съедобной части клубня картофеля, который представлен в таблице 1.
Таблица 1 – Биохимический состав клубней картофеля (по данным Кучко А.А. и др., 1998)
Вещество |
Содержание вещества, % к сырой массе | ||
минимальное |
максимальное |
среднее | |
Вода |
63,2 |
86,9 |
76,3 |
Крахмал |
8,0 |
29.4 |
17,5 |
Сахара |
0,1 |
8,0 |
1,0 |
Клетчатка |
0,2 |
3,5 |
1,0 |
Сырой протеин |
0,7 |
4,6 |
2,0 |
Жиры |
0,04 |
1,0 |
0,1 |
Зола |
0,4 |
1,9 |
1,0 |
Всего сухие вещества |
13,1 |
36,8 |
23,7 |
Органические кислоты |
0,1 |
1,0 |
0,6 |
В составе белков картофеля обнаружены все аминокислоты, встречающиеся в растениях, в том числе и все незаменимые. Они содержатся в клубнях как в свободном, так и в связанном виде.
Из полифенолов в клубнях содержатся хлорогеновая и кофейная кислоты, скополин, скополетин и многие другие, значительная часть которых ещё не идентифицирована.
К прочим органическим веществам относятся многие соединения, содержащиеся в очень небольших количествах, но играющие исключительно важную роль в процессах жизнедеятельности картофеля, например нуклеиновые кислоты, без которых невозможен синтез белка, деление клеток, образование тканей.
То же можно сказать и о витаминах, многие из которых сами, или в соединении с другими веществами, являются активной группой ряда ферментов. В свежеубранном картофеле содержится в среднем 20 мг% витамина С, представленного почти целиком восстановленной формой аскорбиновой кислоты (на долю дегидроформы приходится 2–3 мг%). Из других витаминов в клубнях содержится (средние данные, в мг%): В1 — 0,11; В2 — 0,06; РР — 0,57; В6 — 0,22; пантотеновая кислота — 0,32; В9 — 0,0008.
К прочим органическим веществам картофеля относятся также глюкозиды — вещества, состоящие чаще всего из сахара и иного компонента неуглеводной природы. Примером являются гликоалкалоиды соланин и чаконин, а также скополетин и другие соединения, которым принадлежит важная роль в защитных реакциях картофеля против фитопатогенных микроорганизмов.
Большая часть гликоалкалоидов, как и полифенолов, находится в покровных тканях клубня, и этим в значительной мере объясняется их защитная роль.
Большая часть веществ, содержащихся в картофеле, растворена в воде и легкодоступна для микроорганизмов. Поэтому клубень представляет собой хороший субстрат для развития микроорганизмов и легко ими поражается. На обезвоживании растительных тканей основан метод заготовки картофеля впрок путём сушки.
В то же время для сохранения картофеля в свежем виде, наоборот, необходимо предупредить испарение клубнями воды, т.к. оно приводит к ослаблению тургора клеток, дезорганизации обмена и, как следствие, снижению уровня устойчивости. Испарение воды — одна из основных причин уменьшения массы картофеля при хранении.
Биохимические процессы, активно протекающие в клубнях, являются причиной изменения их химического состава во время хранения и возникновения различного рода функциональных расстройств. Вместе с тем, именно благодаря тому, что на протяжении всего периода хранения в клубнях продолжаются процессы жизнедеятельности, они обладают определённой устойчивостью к фитопатогенным микроорганизмам.
Свежеубранные клубни картофеля характеризуются довольно низким содержанием сахаров: в среднем 0,7% на сырой вес или 2,8% на сухое вещество. Более половины их приходится на глюкозу (около 65%), примерно 30% на сахарозу и только 5% на фруктозу.
Накопление сахаров в картофеле при низкой температуре, а также их исчезновение при повышении температуры, обусловлено различной скоростью следующих трёх реакций углеводного обмена: распадом крахмала до сахаров, превращением сахара вновь в крахмал, окислением сахара в процессе дыхания. Со снижением температуры скорость всех трёх реакций замедляется, а с повышением — ускоряется, но с различной интенсивностью. Ещё в 19 веке Мюллер–Тургау показал (цит. по Метлицкий и др., 1972), что при снижении температуры с 20 до 0ºС скорость реакции крахмал — сахар уменьшается на одну треть; скорость сахар — крахмал уменьшается в 20 раз, скорость потребления сахара в процессе дыхания (сахар = углекислый газ + вода) уменьшается в 3 раза.
Таким образом, со снижением температуры заметно замедляется скорость всех трёх реакций. Однако сильнее всего ослабляется ресинтез крахмала, и в этом основная причина накопления сахаров в клубнях при низкой температуре. С повышением температуры скорость этой реакции возрастает сильнее других, и поэтому она в первую очередь ответственна за исчезновение сахаров в картофеле при выдерживании клубней в тепле после
холодного хранения.
Разная скорость реакций объясняется тем, что все они катализируются различными ферментами, оптимум действия которых находится на различных отрезках температурной кривой. Вместе с тем большое влияние на активность ферментов оказывает величина рН внутриклеточной среды. С понижением величины рН распад крахмала преобладает над его синтезом, а с повышением — усиливается синтез крахмала. Согласно исследованиям Мюллер–Тургау, от 2/3 до 3/4 исчезающих сахаров превращаются в крахмал, а остальные сгорают в процессе дыхания. Эти опыты впоследствии были повторены различными исследователями. И, хотя во многих вновь поставленных опытах соотношения между расходованием сахаров и увеличением крахмала в клубнях существенно отличались от обнаруженных Мюллер–Тургау, основная установленная им закономерность подтвердилась.
Скорость и направление процессов превращения сахаров и крахмала зависят от ряда условий. Большое значение имеет не только температура, но и длительность холодного хранения. Так, в одном из опытов авторы (Метлицкий и др., 1963) периодически учитывали изменение содержания сахара в картофеле после смены холодного хранения на тёплое. Если смену проводили в декабре, т.е. через два с половиной месяца хранения при нулевой температуре, сахаристость клубней снижалась уже на второй день. Если холодное хранение заменяли тёплым в марте, т.е. через пять с половиной месяцев хранения при нулевой температуре, то первый день выдерживания в тепле вызывал даже некоторое повышение сахаристости картофеля и лишь через 2–3 суток начиналось снижение содержания сахаров (таблица 2)
Таблица 2 – Изменение сахаристости картофеля после смены холодного хранения на теплое (в % на сырой вес)
Дата анализа |
Исходное содержание при 0ºС |
Через 1 день |
Через 5 деней |
Декабрь |
2,08 |
2,00 |
1,03 |
Март |
2,57 |
2,88 |
1,39 |
Это можно объяснить тем, что в условиях длительного хранения картофеля при нулевой температуре процессы распада крахмала заходят очень глубоко и для его ресинтеза требуется значительное время. Чем дольше картофель хранят при низкой температуре, тем дольше требуется выдерживать его в тепле для ресинтеза крахмала.
В большинстве случаев расход сахаров оказывается большим, чем это необходимо на ресинтез крахмала и на дыхание. По-видимому, сахара, не использованные на ресинтез крахмала и на дыхание, превращаются в какие-то промежуточные соединения, химическая природа которых ещё не изучена. Вероятно, они могут возникать как на пути полимеризации сахаров, так и на пути их окисления. Во всяком случае, сахара не превращаются в декстрины, так как декстрины в картофеле составляют не более 2–3% на сухое вещество.
По данным М.З. Покровской (1965), ресинтезированный крахмал отличается от исходного меньшими размерами зёрен. Уменьшение размера зёрен происходит за счёт увеличения доли мелких зёрен. Если в исходном крахмале на долю мелких зёрен (до 10 мкм) приходится 20% всех зёрен, то в ресинтезированном — 35%.Размер зёрен крахмала, содержащихся в клетках картофеля, колеблется от 1 до 100 мкм, но больше всего зёрен величиной от 20 до 40 мкм. С размером крахмальных зёрен связан такой важный показатель качества картофеля, как его консистенция при варке.
Полностью избежать накопления сахаров в клубнях можно при температуре хранения около 10 ºС. Но при такой температуре возможные сроки хранения картофеля заметно сокращаются и сильно возрастают потери углеводов на дыхание. По данным Метлицкого Л.В. и др. (1972), при температуре 4–5 ºС хотя и происходит накопление сахаров, но в незначительных размерах, и от них можно освободиться за сравнительно короткий срок выдерживания клубней в тепле.
Рассмотренные данные об особенностях углеводного обмена в клубнях картофеля позволяют сделать некоторые практические выводы относительно температурного режима хранения картофеля. Чтобы обеспечить более или менее согласованное прохождение в клубнях основных звеньев углеводного обмена и предупредить вместе с тем заметные потери углеводов, картофель лучше хранить при температуре около 4 ºС. При этой температуре хорошо сохраняются не только кулинарные и технологические качества картофеля, но и его семенные свойства.
Клубни некоторых сортов картофеля, хранившиеся при температуре 4 ºС, дружнее и быстрее прорастали, чем клубни, хранившиеся при более низкой температуре. Но эта же температура может создать угрозу более быстрого поражения картофеля инфекционными болезнями из-за усиления жизнедеятельности микроорганизмов, а также более быстрого прорастания. Для защиты клубней от инфекционных болезней довольно эффективным средством является хранение в условиях активного вентилирования. Для защиты же от прорастания этого ещё не достаточно, нужны более сильнодействующие средства.
Большие изменения претерпевает в картофеле содержание витамина С. По данным Прокошева С.М. (1947), при среднем содержании витамина С в разных тканях клубня от 10,9 до 15 мг% пределы изменчивости его содержания очень велики: от 5 до 40 мг%. Нижний предел характерен для наиболее старых клубней, прошедших длительное хранение, тогда как верхний предел наблюдается в наиболее молодых, свежевыкопанных.
Картофель, извлеченный из земли, представляет собой живой организм, постоянно претерпевающий физиологические изменения. Наиболее важный процесс – дыхание клубней. В процессе дыхания в результате окисления кислородом воздуха органических веществ происходит образование углекислого газа и воды. При этом выделяется необходимая каждому растительному организму энергия. Наиболее часто веществом, сгорающим в процессе дыхания, является сахар глюкоза. При полном его сгорании в качестве конечных продуктов получается углекислый газ и вода по суммарному уравнению:
С6H12O6 + 6O2 = 6CO2 + 6H2O + 674 кал.
По этому уравнению на объем поглощенного кислорода должен образоваться равный ему объем углекислого газа. Между энергией дыхания и интенсивностью процессов обмена веществ в организме существует тесная связь. Поэтому изучение интенсивности дыхания картофеля имеет большое значение.
Так как скорости ферментативных реакций зависят от концентрации субстрата, то представляет интерес изучение зависимости интенсивности дыхания картофеля от количества простых сахаров. Однако такая зависимость не обнаруживается, хотя некоторые авторы находили при различных температурах хранения картофеля некоторую корреляцию между изменением общего количества сахаров и интенсивностью дыхания.
Установлено, что интенсивность дыхания клубней зависит от их зрелости и поврежденности. Незрелый картофель, равно как и поврежденный при уборке, дышит активнее. Активность дыхания картофеля изменяется и в разные периоды хранения. Обычно дыхание снижается через несколько дней после выкопки картофеля и держится на невысоком уровне при его хранении до декабря и далее. Однако различные сорта картофеля при хранении ведут себя неодинаково.
Информация о работе Влияние условий хранения на пищевую ценность картофеля