Автор работы: Пользователь скрыл имя, 24 Апреля 2015 в 13:48, контрольная работа
Цеолиты и методы их получения. Характеристика цеолитов. Стадии гетерогенно-каталитических процессов. Гидрокрекинг нефтяных фракций.
1. Структура цеолитов
2. Кристаллизация цеолитов из щелочных силикоалюмогелей
3. Направленный синтез цеолитов
4. Варьирование адсорбционных свойств цеолитов
Список использованной литературы
Основные реакции при гидрокрекинге нефтяного сырья.
Важнейшими реакциями гидрокрекинга являются:
-разрыв и насыщение (гидрогенолиз) парафиновых углеводородов по связи С-С;
-гидрирование присутствующих в сырье олефинов и других непредельных соединений;
-гидродеалкилирование и изомеризация;
-гидрирование моно-, би- и полициклических ароматических углево-дородов;
-разрыв и насыщение кислородных, сернистых и азотистых соединений по связям С-О, C-S и C-N;
-разложение металлоорганических соединений;
-полимеризация и коксообразование на поверхности и в объеме катализатора.
Превалирующей является реакция гидрогенолиза по связи С-С. Ниже приведены основные реакции, которым подвергаются различные классы углеводородов и неуглеводородных соединений.
Нормальные парафиновые углеводороды претерпевают расщепление и изомеризацию. Реакциям расщепления способствуют температура процесса и характер основы катализатора. Реакции расщепления идут на поверхности и в объеме катализатора. Разрыв по связи С-С происходит в основном посередине молекулы или ближе к середине, в результате чего в продуктах гидрокрекинга содержание углеводородов С1 и С2 (метан, этан) невелико, – превалируют соединения С3, С4 и более тяжелые.
Олефиновые углеводороды, присутствующие в сырье и образующиеся в результате разложения, насыщаются водородом, молекулы которого активируются на поверхности катализатора, превращаясь в протон Н+.
А роматические углеводороды при гидрокрекинге парафинов и олефинов не образуются, поскольку реакции конденсации и циклизации в среде водорода под давлением и в присутствии гидрирующих катализаторов подавляются. Все основные реакции гидрокрекинга проходят через образование карбонийиона – промежуточного углеводородного соединения, обладающего зарядом:
Олефиновые углеводороды изомеризуются легче, чем парафиновые, и обычно изомеризация парафи новых углеводородов про ходит через стадию образования олефинов. Непосредственная изомеризация парафиновых углеводородов возможна только в присутствии активных изомеризующих катализаторов, например катализаторов на цеолитной основе. Моноциклические алкилароматические углеводороды в условиях гидрокрекинга при невысоком давлении до 10МПа легко отщепляют длинные боковые цепи. Если гидрокрекинг проводят на катализаторе с изомеризующей активностью, одновременно с отщеплением боковых цепей происходит их изомеризация. Короткие боковые цепи более устойчивы. Для отрыва этильных и метильных групп необходимы темпратуры выше 450°С.
Если гидрокрекинг проводят при давлении 10-15 МПа, наряду с отрывом боковых цепей возможно гидрирования ароматических колец. Ниже приведена схема гидрирования бензольного кольца и последующего разрыва цикла:
О бразующиеся изогексаны могут претерпевать дальнейшие превращения-расщепление и изомеризацию. Повышение температуры гидрокрекинга способствует превращению бензольного кольца в изопарафиновые углеводороды.
Гидрирование бициклических ароматических углеводородов проходит через образование гидроароматических соединений, например тетралина. Дальнейшее превращение тетралина идет двумя путями: через образование алкилбензола и через образование декалина в результате гидрирования второго кольца. В первом случае конечным продуктом превращения является бензол, во втором циклогексан. Схема превращения нафталина:
Гидрирование трициклических и полициклических ароматических углеводородов также протекает через образование гидроароматических углеводородов. Прогидрированные кольца расщепляются и изомеризуются. Конечными продуктами распада являются бензол, циклогексан, их производные и изопарафиновые углеводороды. Би-, три- и полициклические углеводороды подвергаются гидрокрекингу при меньшем давлении, чем бензол. Тетралин и декалин образуются при давлении порядка 7МПа, гидроантрацены – при 5МПа. Состав конечных продуктов определяется соотношением скоростей отдельных реакций при заданном режиме гидрокрекинга.
Вариант 6
2. Методы получения синтез-газа. Катализаторы и условия процесса, показать на примерах.
Первым известным человечеству способом получения синтез-газа была газификация каменного угля. Данный способ был осуществлен в Англии еще в 30-е годы XIX века, и во многих странах мира до 50-х годов XX века. Впоследствии данная методика была вытеснена методами, основанными на использовании нефти и природного газа. Однако в связи с существенным сокращением мировых нефтяных ресурсов, значение процесса газификации каменного угля снова стало возрастать. К тому же, благодаря такому необходимому процессу как переработка ТБО, ученые научились добывать синтез-газ из новых, нетрадиционных источников.
Сегодня существуют три основных метода получения синтез-газа.
1. Газификация угля. Данный процесс основан на взаимодействии каменного угля с водяным паром и происходит по формуле:
C + H2O → H2 + CO.
Данная реакция является эндотермической, и равновесие при температуре 900-1000 по шкале Цельсия сдвигается вправо. Разработаны различные технологические процессы, использующие парокислородное дутье, благодаря которому наряду с упомянутой реакцией параллельно протекает экзотермическая реакция сгорания угля, которая обеспечивает необходимый тепловой баланс. Ее формула:
C + 1/2O2 → CO.
2. Конверсия метана. Данная реакция взаимодействия водяного пара и метана проводится при повышенной температуре (800-900 градусов) и давлении при присутствии никелевых катализаторов (Ni-Al2O3). Формула данного процесса:
CH4 + H2O → CO + 3H2 .
Также в качестве сырья в данном способе вместо метана можно использовать любое сырье, содержащее углеводород.
3. Парциальное
окисление углеводородов. Данны
CnH2n + 2 + 1/2nO2 → nCO + (n + 1)H2 .
Данный способ применим к любому сырью, содержащему углеводороды но наиболее часто используется высококипящая фракция нефти - мазут.