Автор работы: Пользователь скрыл имя, 01 Ноября 2015 в 17:55, контрольная работа
Основу токсикологической химии составляют две естественно-научные дисциплины: токсикология и химия.
Токсикология (от греч. toxikon -- яд и logos -- учение) -- наука, изучающая свойства ядов и физических факторов, механизмы их действия на организм человека и разрабатывающая методы диагностики, лечения и профилактики отравлений. Механизмы воздействия химических агентов и физических факторов исследуют на биологических объектах различного иерархического уровня -- от молекулярного до организма человека. Чем выше уровень биологической организации, тем сложнее методы исследования (рис. 1).
Выделение хлорофоса из биологического материала. В колбу вместимостью 500 мл вносят 100 г измельченного биологического материала и 150 мл воды, подкисленной серной кислотой до рН = 2,0...2,5. Смесь оставляют на 2 ч, часто перемешивая, затем процеживают через марлю. К биоматериалу еще два раза прибавляют воду, подкисленную до рН = 2,0...2,5 (по 75 мл) и каждый раз настаивают по 1 ч, а затем сливают водные вытяжки.
Объединенные кислые водные вытяжки центрифугируют. Центрифугат переносят в делительную воронку, прибавляют 30 мл хлороформа и смесь взбалтывают 10 мин. Хлороформную вытяжку сливают. Хлорофос из кислой водной вытяжки еще 4 раза экстрагируют хлороформом (по 30 мл).
Хлороформные вытяжки соединяют и выпаривают при комнатной температуре досуха. Сухой остаток растворяют в 5 мл воды, затем раствор фильтруют через бумажный фильтр. Фильтрат используют для обнаружения хлорофоса.
Обнаружение хлорофоса
Для обнаружения хлорофоса применяют цветные реакции, холинэстеразную пробу и метод хроматографии.
Реакция с пиридином и щелочью (реакция Фудживара). В пробирку вносят 1 мл исследуемого раствора, 1 мл пиридина и 1 мл 30 %-го раствора гидроксида натрия. Смесь нагревают на кипящей водяной бане 5 мин. При наличии хлорофоса в пробе появляется красная или розовая окраска. Предел обнаружения: 10 мкг хлорофоса.
Реакция с резорцином. В пробирку вносят 1 мл исследуемого раствора, 2 капли 1 %-го раствора резорцина в 20 %-м растворе карбоната натрия или 1 %-м растворе гидроксида натрия. Через 10 мин появляется розовая окраска, а через 15--30 мин наблюдается желто-зеленая флуоресценция раствора. Окраска и флуоресценция раствора достигают максимума через 1--2 ч после прибавления реактивов к исследуемому раствору. Через 4--6 часов розовая окраска переходит в оранжевую, а затем в желтую. Флуоресценция раствора сохраняется в течение нескольких суток. Предел обнаружения: 40 мкг хлорофоса в пробе.
Для обеспечения возможности протекания реакции рН должно равняться 9--11.
Реакция образования изонитрила. В пробирку вносят 0,01-- 0,03 г исследуемого вещества и 1 мл этилового спирта. Смесь взбалтывают, затем прибавляют 2 мл 10 %-го спиртового раствора гидроксида натрия и 1 каплю анилина. При нагревании смеси ощущается характерный запах изонитрила.
Реакция неспецифична. Ее дают хлороформ, ДДВФ и некоторые другие хлорсодержащие вещества.
Реакция с о -толидином. В фарфоровую чашку вносят 0,2-- 0,5 мл водного или спиртового раствора исследуемого вещества, 1 мл 0,5 %-го раствора о -толидина в ацетоне и 1 мл смеси растворов пероксида водорода и гидроксида натрия. В присутствии хлорофоса появляется желтая или оранжевая окраска.
Эту реакцию дают метафос, тиофос и др.
Реакция с 2,4-динитрофенилгидразином. В пробирку вносят 1--10 капель исследуемого раствора и 2 капли 1 н. раствора гидроксида натрия. Через 20 мин прибавляют 1 каплю 0,1 %-го раствора 2,4-динитрофенилгидразина в 4 н. растворе соляной кислоты. Пробирку выдерживают в кипящей водяной бане 30 мин. После этого смесь охлаждают, прибавляют 1 каплю 4 н. раствора гидроксида натрия и 0,5 мл этилового спирта. При наличии хлорофоса в пробе появляется синяя или сине-фиолетовая окраска.
Эту реакцию дают ДДВФ, тиофос и др.
Реакция с ацетоном. В пробирку вносят 0,1--0,5 мл раствора исследуемого вещества в этиловом спирте, прибавляют 1 мл ацетона и 0,5 мл 0,5 н. спиртового раствора гидроксида натрия. При наличии хлорофоса в пробе через 5--15 мин появляется розовая окраска, переходящая в оранжевую.
Холинэстеразная проба. Хлорофос понижает активность ацетилхолинэстеразы, которая теряет способность разлагать ацетилхолин.
Обнаружение хлорофоса методом хроматографии. На пластинку, покрытую тонким слоем силикагеля КСК, закрепленным гипсом, наносят каплю спиртового раствора исследуемого вещества и каплю раствора «свидетеля». Пятна подсушивают на воздухе. Затем пластинку вносят в камеру, насыщенную парами системы растворителей (смесь равных объемов н -гексана и ацетона). После того как система растворителей поднимется на пластинке на 10 см выше линии старта, пластинку вынимают из камеры, подсушивают на воздухе и опрыскивают смесью 2 %-го водного раствора резорцина и 10 %-го раствора карбоната натрия, взятых в соотношении 2 : 3. Подсушенную пластинку нагревают 7--10 мин в сушильном шкафу при 100 °С. При этом пятна на пластинке приобретают оранжевую окраску.
Ряд чужеродных соединений в организме под влиянием соответствующих ферментных систем подвергается дезаминированию, дезалкилированию и десульфированию.
Дезалкилирование (деалкилирование). При дезалкилирова-нии происходит отщепление алкильных групп, находящихся в молекулах чужеродных соединений. Наиболее часто дезалкилированию подвергаются соединения, содержащие алкильные группы при атомах кислорода, азота и серы. В зависимости от этого процессы отщепления алкильных групп подразделяются на О-, N- и S-дезалкилирование. При дезалкилировании указанных соединений образуются соответствующие фенолы, амины и тиолы (тиофенолы, тиоспирты).
О-Дезалкилирование. Процесс О-дезалкилирования можно показать на примере фенацетина. При О-дезалкилировании фенацетина образуется парацетамидофенол (парацетамол) и аце-тальдегид:
Путем О-дезалкилирования в организме происходит превращение кодеина в морфин.
N-дезалкилирование. Чужеродные
соединения, являющиеся вторичными
и третичными аминами, в организме
подвергаются N-дезалкилированию. В
результате этого образуются
соответствующие амины и
В организме N-дезалкилированию подвергаются морфин и его производные. При N-дезалкилировании морфина образуются норморфин и формальдегид:
S-дезалкилирование. Под влиянием соответствующих ферментов тиоэфиры подвергаются S-дезалкилированию с образованием тиоспиртов и альдегидов:
RSCH 3 ---> RSH + HCHO.
Дезаминирование. Ряд чужеродных соединений, содержащих первичные аминогруппы, под влиянием ферментов подвергается дезаминированию. В результате этого от молекулы вещества отщепляется аминогруппа в виде аммиака. Одним из препаратов, подвергающихся дезаминированию, является фенамин, который под влиянием ферментов печени превращается в фенилацетон и аммиак:
Многие другие чужеродные соединения, содержащие первичную аминогруппу, также подвергаются дезаминированию в организме.
Десульфирование. Некоторые чужеродные соединения, содержащие атомы серы (инсектициды, тиобарбитураты, производные фенилтиомочевины и др.), под влиянием ферментов превращаются в соответствующие кислородные аналоги. В таких соединениях атомы серы замещаются атомами кислорода. Процесс десульфирования чужеродных соединений в организме можно показать на примере тиобарбитала:
В организме ряд чужеродных соединений, к числу которых относятся сложные эфиры, амиды, гидроксамовые кислоты, карбаматы, нитрилы и другие вещества, под влиянием ферментных систем подвергается гидролизу.
С помощью ряда гидролитических ферментов, находящихся в печени и плазме крови, гидролизуются сложные эфиры и амиды. Под влиянием эстеразы сложные эфиры разлагаются на соответствующие кислоты и спирты:
R--COOR' + Н 2 О ---> RСООН + R'ОН.
В организме людей и животных гидролитические ферменты в различных тканях и биологических жидкостях могут действовать неодинаково. Свидетельством этому является то, что в плазме кроликов атропин и кокаин быстро подвергаются гидролизу, а в плазме крови человека они не гидролизуются (Д. Парк, 1973).
Амиды в организме под влиянием ферментов (амидаз) подвергаются гидролизу. Однако гидролитическое расщепление амидов происходит медленнее, чем расщепление эфиров с помощью эстераз.
Кроме окислительных ферментных систем в печени, почках, крови содержатся ферментные системы, способствующие восстановлению чужеродных соединений в организме. Эти ферментные системы катализируют восстановление ароматических нитросоединений в амины.
С помощью ферментов (редуктаз) происходит восстановление нитробензола в анилин, n -нитрозобензойной кислоты в n -аминобензойную кислоту и т. д.
Восстановление нитросоединений в амины происходит через образование ряда промежуточных продуктов. Это можно показать на примере восстановления м -динитробензола:
Под влиянием соответствующих ферментов в организме происходит восстановление дисульфидов, сульфоксидов, N-оксидов, гидроксамовых кислот и ряда других чужеродных соединений.
При окислении под влиянием ферментов происходит превращение многих чужеродных соединений в их метаболиты, содержащие гидроксильные (спиртовые, фенольные) группы. Поэтому такие реакции окисления называются реакциями гидроксилиро-еания. При окислении некоторых чужеродных соединений, содержащих азот и серу, образуются оксиды и другие соединения.
Гидроксилирование ароматических соединений. При окислении бензола в организме под влиянием ферментов образуется фенол, а при окислении нафталина -- нафтолы:
Продукты окисления (гидроксилирования) бензола и нафта лина (фенол и нафтолы) выделяются из организма.
В алкильных производных бензола в первую очередь подвергается окислению алкильная группа. Так, толуол (метилбензол) окисляется до бензилового спирта, при дальнейшем окислении которого образуется бензойная кислота, выделяющаяся из организма в виде конъюгатов:
При наличии нескольких атомов углерода в боковой цепи алкильных производных бензола гидроксилирование может происходить при различных атомах углерода. Это можно показать на примере гидроксилирования н-пропилбензола:
З-Фенилпропан-1-ол подвергается окислению до фенилпропио-новой кислоты (C 6 H 5 CH 2 CH 2 COOH), которая при дальнейшем окислении превращается в бензойную кислоту.
Поступившая в организм салициловая кислота может выделяться из него в неизмененном виде и в виде глюкуронида. Однако часть салициловой кислоты под влиянием ферментов печени метаболизируется с образованием гентизиновой (I), диоксибензойной (II) и триоксибензойной (III) кислот:
Гидроксилирование алициклических соединений. Алицикличе-скими называются соединения, содержащие циклы или кольца из атомов углерода (кроме бензола и его производных). В организме алициклические вещества подвергаются гидроксилированию с образованием соответствующих спиртов. Циклогексан (гексагидробензол) метаболизируется в циклогексанол и циклогександиол-1, 2:
Если соединения содержат алициклическое и ароматическое кольца, то насыщенное (алициклическое) кольцо гидроксилиру-ется легче, чем ароматическое. Это можно показать на примере метаболизма тетралина, который метаболизируется с образованием тетралола и незначительного количества 5, б, 7, 8-тетрагидро-2-нафтола:
Гидроксилирование ароматических аминов и их производных.
Анилин является аминопроизводным бензола. В организме под влиянием ферментов анилин подвергается гидроксилированию с образованием о -, м- и n -аминофенолов:
Ацетанилид метаболизируется путем гидроксилирования. При этом образуется о -оксиацетанилид:
Анилин также может подвергаться гидроксилированию по аминогруппе. При этом в качестве метаболита образуется фенилгидроксиламин. Этот процесс метаболизма относится к так называемому N-гидроксилированию.
Фенилгидроксиламин, образующийся при метаболизме анилина, может превращаться в нитрозобензол:
Соединения, в молекулах которых содержится азот или cepa, под влиянием ферментов могут окисляться в организме с образованием N-оксидов, сульфоксидов или сульфонов. В зависимости от атомов, подвергающихся окислению, процесс метаболизма подразделяют на N-окисление и S-окисление.
При N-окислении триметиламина образуется триметиламиноксид:
Аналогично метаболизируется диметиланилин, который под влиянием ферментов превращается в диметиланилин -- N-оксид:
Окисление спиртов и альдегидов. Первичные спирты (этиловый, бутиловый, бензиловый и др.) с помощью фермента алкогольдегидрогеназы, которая локализуется в печени, почках и легких, окисляются в соответствующие альдегиды:
СН 3 СН 2 ОН ---> СН 3 СНО.
Алкогольдегидрогеназа млекопитающих имеет незначительное сродство к метиловому спирту, который метаболизируется в основном с помощью ксантиноксидазы и каталазы. Под влиянием этих ферментов метиловый спирт превращается в формальдегид.
Вторичные спирты в организме окисляются в кетоны с помощью алкогольдегидрогеназы. Однако скорость окисления этих спиртов в организме значительно меньше, чем скорость окисления первичных спиртов. Высшие вторичные и третичные спирты в организме окисляются медленно.
Окисление альдегидов. Альдегиды алифатического и ароматического ряда под влиянием ферментов окисляются в соответствующие карбоновые кислоты. Бензальдегид под влиянием альдегидоксидазы превращается в бензойную кислоту:
Хлоралгидрат под влиянием альдегиддегидрогеназы метаболизируется в трихлоруксусную кислоту:
ССl 3 СН (ОН) 2 ---> ССl 3 СООН.
1. При допросе эксперта
в судебном заседании
Государственным судебным экспертом является аттестованный работник государственного судебно-экспертного учреждения, производящий судебную экспертизу в порядке проведения своих должностных обязанностей (ст. 12 ФЗ РФ от 31.05.2001 г. № 73-ФЗ «О государственной судебно-экспертной деятельности в Российской Федерации»).