Автор работы: Пользователь скрыл имя, 15 Июня 2012 в 17:21, шпаргалка
Производство минеральных макро- и микроудобрений, а также кормовых фосфатов. Внесение извести, гипса и других веществ для улучшения структуры почв. Применение химических средств защиты растений: гербицидов, зооцидов и инсектицидов и т. д. Использование в растениеводстве стимуляторов роста и плодоношения растений. Разработка способов выращивания экологически чистой сельскохозяйственной продукции . Повышение продуктивности животных с помощью стимуляторов роста, специальных кормовых добавок. Производство и применение полимерных материалов для сельского хозяйства. Производство материалов для средств малой механизации, использующихся в сельском хозяйстве. Основная цель химизации сельского хозяйства — обеспечение роста производства, улучшение качества и продление сроков сохранности сельскохозяйственной продукции, повышение эффективности земледелия и животноводства. Для борьбы с вредителями, сорняками и болезнями в нашей стране ежегодно выпускают более 500 тыс. т пестицидов. Их применение позволяет сберечь до сотни тысяч тонн урожая в год.
Понятие квантового состояния частицы в системе справедливо в тех случаях, когда взаимод. между частицами можно заменить нек-рым эффективным полем, а каждую частицу можно характеризовать индивидуальным набором квантовых чисел; при строгом рассмотрении системы взаимод. частиц существуют только квантовые состояния всей системы в целом. Одночастичное приближение лежит в основе метода самосогласов. поля (метод Хартри-Фока; см. Молекулярных орбиталей методы), широко применяемого в теории атомных и мол. спектров, квантовой теории хим. связи, при описании оболочечных моделей атома и ядра и т.д.
Паули принцип в рамках одночастичного приближения позволяет обосновать периодич. систему хим. элементов Д. И. Менделеева, т.к. наличие в одном состоянии только одного электрона объясняет последовательность заполнения электронных оболочек и связанную с этой последовательностью периодичность св-в элементов. Макс. число электронов в оболочке с главным квантовым числом n определяется, согласно Паули принципу, числом разл. наборов квантовых чисел l, ml, и ms, т. е. равно 2(2l + 1) = 2n2. Отсюда получаются числа заполнения электронных оболочек в порядке возрастания номера оболочки: 2, 8, 18, 32 ... Для эквивалентных электронов атома, т. е. электронов с одинаковыми n и l, в силу Паули принципа осуществляются не все возможные состояния, а лишь те, к-рые различаются ml или ms. B частности, для электронной конфигурации (пр)2 правило векторного сложения моментов кол-ва движения дает шесть термов: 1,3S, 1,3P 1,3D, из к-рых разрешены только три: 1S, 3P и 1D, т. к. для остальных трех термов наборы квантовых чисел для двух электронов совпадают. Учет Паули принципа необходим также при нахождении разрешенных электронных состояний молекул и мол. комплексов. Паули принцип играет фундам. роль в квантовой теории твердого тела, теории ядерных реакций и р-ций между элементарными частицами.
16 Значение периодического закона. Периодическая система элементов явилась одним из наиболее ценных обобщений в химии. Она представляет собой как бы конспект химии всех элементов, график по которому можно читать свойства элементов и их соединений. Система позволила уточнить положение, величины атомных масс, значение валентности некоторых элементов. На основе таблицы можно было предсказать существование и свойства еще не открытых элементов. Менделеев предсказал и описал свойства не открытых в то время элементов, которые он назвал экабор (скандий), экаалюминий (галий), экасилиций (германий). Менделеев сформулировал периодический закон и предложил его графическое отображение, однако в то время нельзя было определить природу периодичности. Не была вскрыта причина периодичности изменения свойств и их соединений.Смысл периодического закона был выявлен позднее, в связи с открытиями по строеию атома.
Теория строения атома
Атом - это электронейтральная частица, которая состоит из положительно заряженного ядра и негативно заряженных электронов.
Строение атомных ядер
Ядра атомов состоят из элементарных частиц двух видов : протонов (p) и нейтронов (n). Сумма протонов и нейтронов в ядре одного атома называется нуклонным числом: где А - нуклонное число, N - число нейтронов, Z - число протонов.
Протоны имеют позитивный заряд ( 1), нейтроны заряда не имеют (0), электроны имеют негативный заряд (- 1). Массы протона и нейтрона приблизительно одинаковы, их принимают ровными 1. Масса электрона намного меньше, чем масса протона, потому в химии ею пренебрегают, считая, что вся масса атома сосредоточена в его ядре. Число положительно заряженных протонов в ядре равняется числу негативно заряженных электронов, то есть атом в целом электронейтрален. Атомы с одинаковым зарядом ядра складывают химический элемент. Атомы разных элементовназываются нуклидами.
17. Химическая
связь - это взаимодействие
двух атомов, осуществляемое
путем обмена электронами.
При образовании химической
связи атомы стремятся
приобрести устойчивую
восьмиэлектронную
(или двухэлектронную)
внешнюю оболочку, соответствующую
строению атома ближайшего
инертного газа. Различают
следующие виды химической
связи: ковалентная (полярная
и неполярная; обменная
и донорно-акцепторная),
ионная, водородная
и металлическая.
18.Ковалентная связь – наиболее общий вид химической связи, возникающий за счет обобществления электронной пары посредством обменного механизма, когда каждый из взаимодействующих атомов поставляет по одному электрону, или по донорно-акцепторному механизму, если электронная пара передается в общее пользование одним атомом (донором) другому атому (акцептору)
Классический пример неполярной ковалентной связи (разность электроотрицательностей равна нулю) наблюдается у гомоядерных молекул: H–H, F–F. Энергия двухэлектронной двухцентровой связи лежит в пределах 200–2000 кДж∙моль–1.
При образовании
гетероатомной ковалентной
Направленность связи обусловлена молекулярным строением вещества и геометрической формы их молекулы. Углы между двумя связями называют валентными.
Насыщаемость — способность атомов образовывать ограниченное число ковалентных связей. Количество связей, образуемых атомом, ограничено числом его внешних атомных орбиталей.
Полярность
связи обусловлена
Поляризуемость связи выражается в смещении электронов связи под влиянием внешнего электрического поля, в том числе и другой реагирующей частицы. Поляризуемость определяется подвижностью электронов. Полярность и поляризуемость ковалентных связей определяет реакционную способность молекул по отношению к полярным реагентам.
Электроны тем подвижнее, чем дальше они находятся от ядер
19.Ионная
связь – частный случай ковалентной,
когда образовавшаяся электронная пара
полностью принадлежит более электроотрицательному
атому, становящемуся анионом. Основой
для выделения этой связи в отдельный
тип служит то обстоятельство, что соединения
с такой связью можно описывать в электростатическом
приближении, считая ионную связь обусловленной
притяжением положительных и отрицательных
ионов. Взаимодействие ионов противоположного
знака не зависит от направления, а кулоновские
силы не обладают свойством насыщености.
Поэтому каждый ион в ионном соединении
притягивает такое число ионов противоположного
знака, чтобы образовалась кристаллическая
решетка ионного типа. В ионном кристалле
нет молекул. Каждый ион окружен определенным
числом ионов другого знака (координационное
число иона). Ионные пары могут существовать
в газообразном состоянии в виде полярных
молекул. В газообразном состоянии NaCl
имеет дипольный момент ~3∙10–29 Кл∙м, что
соответствует смещению 0,8 заряда электрона
на длину связи 0,236 нм от Na к Cl, т. е. Na0,8+Cl0,8–. Электроотрицательность
(χ) — фундаментальное
химическое свойство
атома, количественная
характеристика способности
атома в молекуле смещать
к себе общие электронные
пары.
Современное
понятие об электроотрицательности
атомов было введено американским химиком
Л. Полингом. Л. Полинг использовал понятие
электроотрицательности для объяснения
того факта, что энергия гетероатомной
связи A—B (A, B — символы любых химических
элементов) в общем случае больше среднего
геометрического значения гомоатомных
связей A—A и B—B.
В настоящее
время для определения
Металлическая связь возникает в результате частичной делокализации валентных электронов, которые достаточно свободно движутся в решетке металлов, электростатически взаимодействуя с положительно заряженными ионами. Силы связи не локализованы и не направлены, а делокализированные электроны обусловливают высокую тепло- и электропроводность.
Водородная связь. Ее образование обусловленно тем, что в результате сильного смещения электронной пары к электроотрицательному атому атом водорода, обладающий эффективным положительным зарядом, может взаимодействовать с другим электроотрицательным атомом (F, O, N, реже Cl, Br, S). Энергия такого электростатического взаимодействия составляет 20–100 кДж∙моль–1. Водородные связи могут быть внутри- и межмолекулярными. Внутримолекулярная водородная связь образуется, например, в ацетилацетоне и сопровождается замыканием цикла.
20. Понятие "Гибридизация" в химии было предложено американским химиком Лайнусом Полингом для объяснения структуры таких молекул как метан.
Исторически применялась только для простых молекул, но позднее была расширена и для более сложных. В отличие от теории молекулярных орбиталей не является строго количественной, например она не в состоянии предсказать фотоэлектронные спектры даже таких простых молекул как вода. Поэтому в настоящее время используется в основном в педагогических целях и в синтетической органической химии.
Существует три вида гибридизации:
-sp-гибридизация
Происходит при смешивании одной s- и одной p-орбиталей. Образуется две равноценные sp-атомные орбитали, расположенные линейно под углом 180 градусов и направленные в разные стороны от ядра атома углерода. Две оставшиеся негибридные p-орбитали располагаются во взаимно перпендикулярных плоскостях и участвуют в образовании `0;-связей, либо занимаются неподелёнными парами электронов, длина 0,120 нм.
-sp²-гибридизация
Происходит при смешивании одной s- и двух p-орбиталей. Образуется три гибридные орбитали с осями, расположенными в одной плоскости и направленными к вершинам треугольника под углом 120 градусов. Негибридная p-атомная орбиталь перпендикулярна плоскости и, как правило, участвует в образовании `0;-связей, длина 0,134 нм.
-sp³-гибридизация
Происходит при смешивании одной s- и трех p-орбиталей. Возникают четыре одинаковые орбитали, расположенные относительно друг друга под тетраэдрическими углами 109° 28’ (109,47°), длина 0,154 нм. Метод молекулярных орбиталей исходит из того, что каждую молекулярную орбиталь представляют в виде алгебраической суммы (линейной комбинации) атомных орбиталей. Например, в молекуле водорода в образовании МО могут участвовать только 1s атомные орбитали двух атомов водорода, которые дают две МО, представляющие собой сумму и разность атомных орбиталей 1s1 и 1s2 – МО± = C11s1 ±C21s2.
21. Металлическая
связь— связь между
положительными ионами
в кристаллах металлов,
осуществляемая за счет
притяжения электронов,
свободно перемещающихся
по кристаллу. В соответствии
с положением в периодической
системе атомы металлов
имеют небольшое число
валентных электронов.
Эти электроны достаточно
слабо связаны со своими
ядрами и могут легко
отрываться от них. В
результате в кристаллической
решетке металла появляются
положительно заряженные
ионы и свободные электроны.
Поэтому в кристаллической
решетке металлов существует
большая свобода перемещения
электронов: одни из
атомов будут терять
свои электроны, а образующиеся
ионы могут принимать
эти электроны из «электронного
газа». Как следствие,
металл представляет
собой ряд положительных
ионов, локализованных
в определенных положениях
кристаллической решетки,
и большое количество
электронов, сравнительно
свободно перемещающихся
в поле положительных
центров. В этом состоит
важное отличие металлических
связей от ковалентных,
которые имеют строгую
направленность в пространстве.
Металлическая
связь отличается
от ковалентной также
и по прочности: ее
энергия в 3-4 раза
меньше энергии ковалентной
связи.
Энергия связи — энергия, необходимая для разрыва химической связи во всех молекулах, составляющих один моль вещества. Энергии ковалентных и ионных связей обычно велики и составляют величины порядка 100-800 кДж/моль.
22. ВОДОРОДНАЯ СВЯЗЬ (Н-связь) – особый тип взаимодействия между реакционно-способными группами, при этом одна из групп содержит атом водорода, склонный к такому взаимодействию. Водородная связь – глобальное явление, охватывающее всю химию. В отличие от обычных химических связей, Н-связь появляется не в результате целенаправленного синтеза, а возникает в подходящих условиях сама и проявляется в виде межмолекулярных или внутримолекулярных взаимодействий. Особенности водородной связи. Отличительная черта водородной связи – сравнительно низкая прочность, ее энергия в 5–10 раз ниже, чем энергия химической связи. По энергии она занимает промежуточное положение между химическими связями и Ван-дер-ваальсовыми взаимодействиями, теми, что удерживают молекулы в твердой или жидкой фазе. В образовании Н-связи определяющую роль играет электроотрицательность участвующих в связи атомов – способность оттягивать на себя электроны химической связи от атома – партнера, участвующего в этой связи. В результате на атоме А с повышенной электроотрицательностью возникает частичный отрицательный заряд d- , а на атоме-партнере – положительный d+, химическая связь при этом поляризуется: Аd-–Нd+.