Получение синтетического каучука

Автор работы: Пользователь скрыл имя, 22 Декабря 2014 в 20:21, курсовая работа

Краткое описание

Промышленность синтетического каучука является одной из ведущих отраслей химической и нефтехимической промышленности.
В настоящее время на предприятиях, производящих синтетический каучук, благодаря постоянному совершенствованию существующих и внедрению новых технологических процессов выпускается более 200 марок синтетических каучуков и латексов, что позволяет удовлетворять потребности шинной, резинотехнической, электротехнической, легкой и других отраслей промышленности. Характерной особенностью промышленности синтетического каучука на современном этапе являются значительные масштабы производства.

Содержание

Введение...........................................................................................................4
Литературный обзор………………………………………………………..6
История развития технологии синтетического каучука .............................6
История открытий, обеспечивших создание технологии СК......................7
Производства синтетических каучуков………………………………........9
Получение мономеров для синтетических каучуков.................................10
Производства синтетических каучуков полимеризацией в растворе......11
Свойства изоперена и основные методы его получения …......................12
Стереоспецифической полимеризации изопрена ……………………….20
Полимеризация изопрена……………………………………………….....22
Применение....................................................................................................31
Технологическая часть................................................................................33
Физико-химические характеристики нефти месторождения
Карачаганак....................................................................................................33
2.2 Описания поточной схемы переработки нефти месторождения………..42
2.3 Материальные балансы установок, входящих в поточную схему……...43
Заключения
Список литературы

Вложенные файлы: 1 файл

ТПУС готовый курсовой.doc

— 2.09 Мб (Скачать файл)

 

1.7 Стереоспецифической полимеризации изопрена

 

При полимеризации изопрена можно, в зависимости от порядка раскрытия двойных связей, получить звенья четырех типов:

 

 

В полимерах из цис-1,4- или транс-1,4-звеньев вероятно присоединение молекул изопрена «голова к хвосту» (C1—С4), «голова к голове» (С1—С4) или «хвост к хвосту» (С4—С4); 3,4- или 1,2-полиизопрены могут иметь другое расположение боковых заместителей, что приводит к получению полимеров нерегулярной структуры. Микроструктура полиизопренов оказывает решающее влияние на свойства резин на их основе. При содержании в полимерах до 60% 1,2- и 3,4-звеньев прочность и эластичность ненаполненных вулканизатов очень малы. При 100%-ном содержании этих звеньев и каучук и резины из него сильно закристаллизованы. Для цис-1,4-полиизопрена небольшое содержание структурных неоднородностей сильно влияет на скорость кристаллизации полимера.

Для исследования микроструктуры стереорегулярных полимеров используются инфракрасные и магнитнорезонансные спектры полимеров.

Содержание цис-1,4-звеньев определяется в основном типом катализатора, применяемого для полимеризации изопрена. Так, применение циглеровских (на основе тетрахлорида титана и алюминийалкилов) катализаторов позволяет получить полиизопрен, содержащий до 98% цис-1,4-звеньев, соединенных по принципу «голова к хвосту», с физико-механическими свойствами близкими к свойствам натурального каучука. Следует указать, что в натуральный каучук практически 100% цис-1,4-звеньев соединены по принципу «голова к хвосту». При полимеризации на литий алкильных катализаторах полимер содержит до 93% цис-1,4-звеньев и по ряду показателей уступает натуральному каучука. Свойства вулканизатов полиизопрена, и натурального каучука сравнивается в таблицу  4.

 

Таблица 4.

Сравнивание свойства вулканизатов полиизопрена и натурального каучука

 

 

 

Показатели

 

 

Температура,

°С

Вулканизат

СКИ

НК

СКИ

НК

 

иеиаполиенный

С 50% технического углерода

Условная прочность при растяжении, Мпа

20

100

29-32

19-23

30-32

20-22

25-30

19-20

31

21

Относительное удлинение при разрыве, %

20

100

750-850

850-950

750-800

800-900

520-570

570-780

550

600

Сопротивление раздиру,

кН/м

20

100

-

-

-

-

100-130

70-75

136

60

Эластичностью                        по отскоку, %

20

100

66-69

78-80

70-72

78-81

37-39

52-54

40

58


 

Вопрос о полной замене натурального каучука синтетическим цис-1,4-полиизопреном в шинной и резиновой промышленности важно. Дело в том, что по ряду показателей, таких как когезионная прочность, клейкость, скорость и глубина кристаллизации СКИ-3 пока еще уступает натуральному каучуку. Различия в свойствах СКИ-3 и натурального каучука объясняются некоторыми особенностями их молекулярного строения. Основными их характеристиками-являются микроструктура полимера, средняя молекулярная масса, молекулярно-массовое распределение.

Микроструктура СКИ-3 имеет следующие отличия от микроструктуры натурального каучука: натуральный каучук содержит 94% полиизопрена и 6% не каучуковых веществ, а СКИ-3 содержит практически 100% каучукового углеводорода. Кроме того, натуральный каучук содержит полярные функциональные группы, которые оказывают положительное влияние на его свойства. Более совершенная микроструктура натуральный каучук оказывает положительное влияние на некоторые свойства резиновых изделий из натуральных каучуков. Сейчас проводятся исследования по достижению резинами на основе СКИ-3 качеств, которые делали бы их полностью равноценными резинам на основе натурального каучука.

Полиизопрен с широким молекулярно-массовым распределением обладает лучшими технологическими свойствами. Несмотря на указанную (в таблице 3) разницу в свойствах между натуральным каучуком и полиизопреном, последний по сумме технологических и физико-механических свойств можно считать полноценным заменителем натурального каучука. Полиизопрен, полученный на катализаторах Циглера — Натта, во многих случаях может полностью заменить натурального каучука в шинной промышленности и производстве резинотехнических изделий.

 

1.8 Влияние основных технологических факторов на структуру и свойства цис-1,4 полиизопрена

 

Строение и свойства цис-1,4-полиизопрена и скорость полимеризации зависят от состава катализатора и содержащихся в нем примесей, наличия примесей в изопрене-ректификате и в растворителе, а также от температуры полимеризации и условий выделения каучука из полимеризата.

Каталитическая система. Максимальный выход полимера получается при строго эквимолекулярном соотношении алюминия и титана. При соотношении А1:Ti > 1 наряду с цис-1,4-полиизопреном образуются олигомеры — циклические и линейные димеры изопрена, что приводит к снижению прочности и эластичности вулканизатов.

Приготовление каталитического комплекса является одной из важнейших стадий процесса, в значительной степени определяющей скорость полимеризации и структуру получаемого каучука. Образование комплекса протекает с высокой скоростью, связано с выделением большого количества теплоты и сопровождается рядом побочных процессов.

Большое влияние на свойства каучука оказывает чистота исходных компонентов каталитического комплекса. В TiCl4 недопустимо присутствие даже следов НСl, ТЮСl2, ССl4, SiCl4 и VОСl3. Должен применяться только свежеперегнанный без доступа воздуха TiCl4.

Кислород и вода также разрушают катализатор, поэтому их содержание в техническом азоте, используемом на всех стадиях производства каучука СКИ-3, строго регламентируется: массовое содержание кислорода не должно превышать 0,05%, влаги— 0,001%.

Наиболее сильным ядом для «титанового» катализатора является циклопентадиен. При его содержании 1,5-10~3 моль/л катализатор разрушается полностью. На полимеризацию сильно влияют также азот-, кислород- и серосодержащие соединения. Присутствие диметилформамида или бутилмеркаптана заметно уменьшают скорость полимеризации и содержание цис-1,4-звеньев в полиизопрене. К каталитическим ядам откосятся также ацетиленовые и аленовые углеводороды. Ввиду указанного содержание этих ядов в катализаторе, изопрене, бутадиене и растворителе строго регламентируется. Допустимое массовое содержание вредных примесей в изопрене колеблется от 0,002 до 0,0005%, а в бутадиене от 0,001 до 0,0001%. В растворителе предельно допустимое содержание примесей (в) следующее: Карбонильные соединения 0,001 %, Пероксидные соединения 0,0005 %, Хлориды 0,0005 %, Азотистые соединения 0,0005 %, Органические и неорганические кислоты отсутствует.

Растворитель. Полимеризацию изопрена проводят в инертном растворителе — это необходимо для поддержания системы в жидком состоянии, облегчения осаждения системы и выделения полученного полимера.

В качестве растворителей используют алифатические и ароматические соединения, хорошо растворяющие образующийся полимер, такие как гептан, гексан, циклогексан, бензол. Природа растворителя не влияет на структуру каучука, но скорость полимеризации и глубина превращения зависят от скорости растворения полимера в растворителе. Наиболее высокая скорость полимеризации наблюдается при применении бензола и изопентана.

Наличие воды приводит не только к разрушению катализатора, но и к нарушению соотношения компонентов каталитического комплекса и к ухудшению качества каучука. Поэтому при стереорегулярной полимеризации необходимо возможно более полное устранение воды из реакционной среды.

Качество мономера. Заметные количества циклопентадиена в изопрене и растворителе сильно тормозят полимеризацию. Другие перечисленные выше примеси также уменьшают скорость полимеризации, снижают содержание в полимере цис-1,4-звеньев, молекулярную массу полиизопрена и ухудшают качество получаемого каучука.

Температура полимеризации. Реакция полимеризации изопрена экзотермично, ее можно представить уравнением

 

                nC5H8 > - (C5H8)n + 75 КДж/моль

 

Поэтому кроме катализатора и примесей на скорость полимеризации изопрена и микроструктуру получаемого каучука большое влияние оказывает температура процесса. Одной из нежелательных побочных реакций при полимеризации изопрена на комплексных катализаторах Циглера —Натта является образование высококипящих олигомеров, которые практически невозможно полностью удалить из полимеризата принятыми в настоящее время методами дегазации. Оставаясь в каучуках, олигомеры придают им неприятный запах и ухудшают физикомеханические свойства вулканизатов. Выход олигомеров возрастает с повышением температуры полимеризации.

Оптимальная температура полимеризации, при которой образуется минимальное количество олигомеров, составляет 20 °С. Однако при такой температуре резко снижается скорость реакции. Поэтому на практике полимеризацию проводят при 25—40 °С и даже немного выше.

Прочие факторы. Скорость полимеризации пропорциональна концентрации мономера и катализатора в растворе и температуре процесса. Температура и концентрация мономера в растворе влияют также на молекулярную массу получаемого полимера: с понижением температуры реакции и повышением концентрации мономера молекулярная масса каучука повышается. Степень конверсии мономера не оказывает заметного влияния на свойства СКИ-3.

Процесс получения цис-полиизопрена состоит из следующих основных стадий:

    1. полимеризация изопрена;
    2. дезактивация катализатора, стабилизация полимера и отмывка полимеризата;
    3. выделение полимера из полимеризата (водная дегазация);
    4. обезвоживание и сушка каучука.

Дополнительными стадиями являются приготовление каталитического комплекса и регенерация растворителя.

 Полимеризация изопрена. Полимеризацию изопрена проводят непрерывно в батарее из четырех — шести последовательно соединенных полимеризаторов, причем в первых двух поддерживается температура 25— 30 °С, в последних 35—40 °С. Реакция полимеризации начинается сразу же после добавления в полимеризационную шихту катализатора. Ввиду экзотермичности реакции для получения каучука хорошего качества необходим эффективный отвод теплоты в условиях высоковязкой реакционной среды. Теплоту реакции отводят путем подачи охлажденного рассола в рубашки полимеризаторов при непрерывном перемешивании содержимого полимеризаторов.

Так как образующийся полимер все время растворяется в растворе, реакционная среда постепенно становится все более вязкой. При содержании в полимеризате более 10 % полимера перемешивание затруднено, и это ухудшает отвод теплоты реакции. Вязкость полимеризата зависит не только от концентрации полимера, но и от его средней молекулярной массы, а также от типа растворителя. Этот показатель очень важен для аппаратурного оформления всех стадий процесса получения полиизопрена. От вязкости полимеризата зависит также скорость и полнота процессов дезактивации и стабилизации полимера и производительность водной дегазации полимеризата.

При проведении полимеризации содержание мономера в шихте составляет 12—15%, конверсия мономера 85—90 %• При такой конверсии полимеризация длится примерно 2—3 ч. Вязкость полимеризата, выходящего из последнего аппарата и содержащего до 12% полимера, составляет около 3000—4000 МПа-с. Подача шихты и каталитического комплекса на полимеризацию, а также рассола в рубашки полимеризаторов регулируется автоматически.

Ввиду большой вязкости полимеризата и необходимости эффективного отвода теплоты, выделяемой при реакции, полимеризаторы (автоклавы) для полимеризации в растворах должны обладать достаточной поверхностью охлаждения и иметь устройство для очистки всей внутренней поверхности от налипающей пленки полимера. Полимеризаторы, используемые в производстве эмульсионных каучуков, для полимеризации в растворах непригодны.

Автоклав для высоковязких растворов, применяемый в отечественной промышленности (рисунок 4), представляет собой вертикальный цилиндрический аппарат, снабженный рубашкой и спиралевидной мешалкой с лопастями и скребками, обеспечивающими непрерывное перемешивание и очистку от полимера всей внутренней поверхности аппарата.

 

                                                                                   1 — вал; 2 — ленточная мешалка; 3 — скребки; 4 — мотор с редуктором;                        5 —предохранительное устройство с мембраной; 6 - корпус; 7 — рубашка.

Рисунок 4. Автоклав для полимеризации в растворах

 

Таблица 5

Краткая характеристика автоклава

 

Объем, м3

16

Площадь поверхности рубашки, м2

45

Диаметр, м

2,2


 

Продолжение таблицы 5

 

Информация о работе Получение синтетического каучука