Расчет тарельчатой ректификационной колонны для разделения бинарной углеводородной смеси бензол-толуол

Автор работы: Пользователь скрыл имя, 27 Января 2014 в 11:54, курсовая работа

Краткое описание

Целью данной работы является определение основных характеристик процесса и размеров тарельчатой ректификационной колонны непрерывного действия для разделения бинарной смеси бензол-толуол.

Содержание

Введение
1.Теоретические основы разрабатываемого процесса
1.1. Общие сведения о процессе ректификации
1.2. Основные технологические схемы для проведения разрабатываемого процесса
1.2.1. Периодическая ректификация
1.2.2. Непрерывная ректификация
1.2.3. Экстрактивная и азеотропная ректификация
1.3. Типовое оборудование для проектируемой установки
1.3.1. Барботажные колонны
1.3.2. Насадочные колонны
1.3.3. Пленочные аппараты
1.3.4. Центробежные ректификаторы
1.4. Тарельчатые колонны
1.4.1. Колпачковые колонны
1.4.2. Ситчатые колонны
2. Теоретические основы расчета тарельчатых ректификационных колонн
2.1 Материальный баланс ректификационной колонны
2.2. Расчет флегмового числ
2.3. Уравнения рабочих линий
2.4. Определение числа тарелок и высоты колонны
2.5. Определение средних массовых расходов пара и жидкости в верхней и нижней частях колонны
2.6. Определение скорости пара и диаметра колонны
2.7. Гидравлическое сопротивление тарельчатых колонн
2.8. Расчет числа действительных тарелок графоаналитическим методом (построением кинетических линий)
3. Расчетная часть
3.1. Материальный баланс колонны и рабочее флегмовое число
3.2. Число теоретических тарелок
3.3. Средние массовые расходы пара и жидкости в верхней и нижней частях колонны
3.4. Скорость пара и диаметр колонны
3.5. Высота колонны
3.6. Расчет гидравлического сопротивления тарелок колонны
3.7. Расчет числа действительных тарелок графоаналитическим методом (построение кинетических кривых)
4. Выбор конструкционного материала аппарата и опор
Заключение
Чертежи
Список литературы

Вложенные файлы: 1 файл

1.docx

— 700.34 Кб (Скачать файл)

Таблица 3.3 Технические характеристики тарелки типа ТС–Р

диаметр отверстий d0, мм

5

шаг между отверстиями  при d0=5 мм t, мм

10–17

относительное свободное  сечение тарелки при t в пределах 10–17 мм FC, %

18.8–5.8

свободное сечение колонны S, м2

2.54

рабочее сечение тарелки  Sт, м2

2.294

высота переливного порога hПЕР, мм

40

периметр слива LC, м

1,32

ширина переливного порога b, м

0.289

расстояние между тарелками h, мм

300

коэффициент сопротивления  ξ

1.1–2.0

Примечание:

t принимаем равным 15 мм

FC рассчитан интерполяцией и равен 9,5%

LC рассчитан и равен 1,32 м

b рассчитан и равен 0.289 м

ξ принимаем равным 1,85

 

Рассчитаем гидравлическое сопротивление тарелок для верхней  части колонны: 1. Найдем скорость пара в отверстиях тарелки:

2. Определим гидравлическое  сопротивление сухой тарелки  по формуле (2.62) при  =5.47 м/с:

3. Рассчитаем поверхностное  натяжение жидкости (бензол и  толуол) при средней температуре  в верхней части колонны tср.в.=890С интерполяцией с использованием справочной информации по поверхностному натяжению веществ [8]:

·  Поверхностное натяжение бензола:

· 

При t=800С→σБ=21.3·10-3 Н/м, при t=1000С→σБ=18.8·10-3 Н/м

·  Поверхностное натяжение толуола:

При t=800С→σТ=21.5·10-3 Н/м, при t=1000С→σТ=19.4·10-3 Н/м

Тогда:

4. Определим сопротивление,  обусловленное силами поверхностного  натяжения по формуле (2.64):

5. Определим объемный  расход жидкости в верхней  части колонны по формуле (2.65):

 

6. Периметр сливной перегородки  (слива) LC и ширину переливного порога b находим, решая систему уравнений:

Решение дает: LC=1.32 м; b=0.289 м

7. Находим высоту слоя  над сливной перегородкой по  формуле (2.67):

8. Рассчитаем высоту парожидкостного  слоя на тарелке по формуле  (2.69):

 

9. Определим сопротивление  парожидкостного слоя по формуле  (2.71):

Итак, гидравлическое сопротивление  тарелки в верхней части колонны  составит по (2.61):

Рассчитаем гидравлическое сопротивление тарелок для нижней части колонны:

1. Определим гидравлическое  сопротивление сухой тарелки  по формуле (2.63) при  =5.47 м/с:

2. Рассчитаем поверхностное  натяжение жидкости (бензол и  толуол) при средней температуре  в нижней части колонны tср.н.=1030С интерполяцией с использованием справочной информации по поверхностному натяжению веществ [8]:

·  Поверхностное натяжение бензола:

При t=1000С→σБ=18.8·10-3 Н/м; при t=1200С→σБ=16.4·10-3 Н/м

·  Поверхностное натяжение толуола:

 

При t=1000С→σТ=19.4·10-3 Н/м; при t=1200С→σТ=17.3·10-3 Н/м

Тогда:

3. Определим сопротивление,  обусловленное силами поверхностного  натяжения по формуле (2.64):

5.Определим объемный расход  жидкости в нижней части колонны  по формуле (2.66):

 

5. Находим высоту слоя  над сливной перегородкой по  формуле (2.68):

6. Рассчитаем высоту парожидкостного  слоя на тарелке по формуле  (2.70):

 

7. Определим сопротивление  парожидкостного слоя по формуле  (2.72):

Итак, гидравлическое сопротивление  тарелки в нижней части колонны  составит по (2.61):

Проверим, соблюдается ли при расстоянии между тарелками h=0.3 м необходимое для нормальной работы тарелок условие:

,

следовательно, условие выполняется.

Проверим равномерность  работы тарелок – рассчитаем минимальную  скорость пара в отверстиях ωо,min достаточную для того, чтобы ситчатая тарелка работала всеми отверстиями.

ωоо,min→5.47<6.94, следовательно, тарелки будут работать не всеми отверстиями.

 

3.7. Расчет числа  действительных тарелок графоаналитическим  методом (построение кинетических  кривых)

Определим вязкость жидкости (бензол и толуол) при температуре t=200C в верхней и нижней частях колонны по формулам (2.94, 2.95):

а) в верхней части колонны  при ; :

б) в нижней части колонны:

Рассчитаем коэффициент  диффузии в жидкости при температуре t=200С в верхней и нижней частях колонны по формулам(2.92,2.93):

а) в верхней части колонны  при ;

б) в нижней части колонны:

Определим плотность жидкости (смеси) при t=200C в верхней и нижней частях колонны по формулам (2.46, 2.47):

а) в верхней части колонны:

при ;

б) в нижней части колонны:

при ;

Рассчитаем температурный  коэффициент b для верхней и нижней частей колонны по формулам (2.96, 2.97):

а) в верхней части колонны:

б) в нижней части колонны:

Рассчитаем коэффициент  диффузии в жидкости при средней  температуре в верхней и нижней частях колонны по формулам (2.90, 2.91):

а) в верхней части колонны:

 

б) в нижней части колонны:

Определим коэффициент диффузии в паровой фазе при средней  температуре в верхней и нижней частях колонны по формулам (2.98, 2.99):

а) в верхней части колонны  при tср.в.=890С:

б) в нижней части колонны  при tср.н.=1030С:

Определим плотность орошения для верхней и нижней частей колонны  по формулам (2.100, 2.101): а) в верхней  части колонны:

б) в нижней части колонны:

 

Определим удельный расход жидкости на 1м ширины переливной перегородки  для верхней и нижней частей колонны  по формулам (2.88, 2.89):

а) в верхней части колонны:

б) в нижней части колонны:

Рассчитаем скорость пара в рабочем сечении тарелки  по формуле (2.79):

Рассчитаем показатель степени  в формуле расчета высоты светлого слоя жидкости по формуле:

Рассчитаем поверхностное  натяжение воды при tср.в.=890С и tср.н.=1030С интерполяцией с использованием справочной информации по поверхностному натяжению воды [11]:

·  Поверхностное натяжение воды при tср.в.=890С:

При t=800С→σв=62.6·10-3 Н/м; при t=1000С→σв=58.9·10-3 Н/м

·  Поверхностное натяжение воды при tср.н.=1030С:

При t=1000С→σв=58.9·10-3 Н/м; при t=1200С→σв=54.9·10-3 Н/м

Определим высоту светлого слоя жидкости для верхней и нижней частей колонны по формуле (2.87):

а) в верхней части колонны:

б) в нижней части колонны:

Критерий Фруда определим  по формулам (2.83,2.84)

а) в верхней части колонны:

б) в нижней части колонны:

Определим паросодержание барботажного слоя по формулам (2.85, 2.86):

а) в верхней части колонны:

б) в нижней части колонны:

Рассчитаем коэффициенты массоотдачи, отнесенные к единице рабочей площади тарелки для жидкой и паровой фаз по формулам (2.81, 2.82):

а) в верхней части колонны:

б) в нижней части колонны:

Осуществим пересчет коэффициента массоотдачи из в :

а) в верхней части колонны:

б) в нижней части колонны:

 

 

При х=0,05 в нижней части колонны коэффициент распределения m (тангенс угла наклона равновесной линии в этой точке) равен 2,60.

По формуле (2.80) вычислим коэффициент массопередачи Куf:

Определим число единиц переноса по формуле (2.78):

Рассчитаем локальную  эффективность по пару по формуле (2.77):

Фактор массопередачи для нижней части колонны:

, где

Тогда:

Рассчитаем В по формуле (2.76):

Далее определим значение Е′′ по формуле (2.75):

Определим Е′ по формуле (2.74):

Эффективность по Мэрфи находим по формуле (2.73), принимая e, равным 1:

При х=0,60 в верхней  части колонны коэффициент распределения m (тангенс угла наклона равновесной линии в этой точке) равен 0.82.

По формуле (2.80) вычислим коэффициент массопередачи Куf:

Определим число единиц переноса по формуле (2.78):

Рассчитаем локальную  эффективность по пару по формуле (2.77)

Фактор массопередачи для верхней части колонны:

Рассчитаем В по формуле (2.76):

Далее определим Е′′ по формуле (2.75):

Определим величину Е′ по формуле (2.74):

Эффективность по Мэрфи находим по формуле (2.73), принимая e, равным 1:

Интерполяцией определим Y*, необходимое для нахождения Yвых. Для расчета используем данные табл. 3.1.

В верхней части колонны:

при х=0.60:

при х=0.75:

при х=0.90:

В нижней части колонны:

при х=0.05:

при х=0.15:

при х=0.30:

По уравнениям рабочих  линий находим Yвх:

В верхней части колонны:

При х=0.60→

При х=0.75→

При х=0.90→

В нижней части колонны:

При х=0.05→

При х=0.15→

При х=0.30→

Используя, ранее рассчитанные Y*, Yвх и Еmy, определим Yвых:

 

В верхней части колонны:

В нижней части колонны:

Результаты расчета параметров, необходимых для построения кинетической линии, приведены в табл. 3.4:

Таблица 3.4 Данные для построения кинетической линии

параметр

Нижняя часть

Верхняя часть

x

0.05

0.15

0.30

0.60

0.75

0.90

m

2.60

1.87

1.34

0.82

0.65

0.51

Kyf

0.09

0.10

0.11

0.10

0.10

0.11

noy

4.79

5.32

5.85

5.11

5.11

5.62

Ey

0.99

0.99

0.99

0.99

0.99

0.99

λ

1.83

1.31

0.94

1.21

0.96

0.75

В

2.01

1.44

1.03

1.32

1.06

0.83

E''my

2.17

1.75

1.49

1.67

1.51

1.38

E'my

1.51

1.40

1.28

1.37

1.30

1.23

Emy

0.69

0.67

0.64

0.42

0.42

0.41

Y*

0.11

0.29

0.51

0.79

0.88

0.96

Yвх

0.06

0.21

0.43

0.72

0.82

0.92

Yвых

0.09

0.26

0.48

0.75

0.85

0.94


 

 

Используя данные табл. 3.4, наносим  на диаграмму равновесия между паром и жидкостью в системе бензол–толуол при флегмовом числе R=2.12 точки, по которым проводим кинетическую линию (см. рис. 3.23).

Рис. 3.23. Определение числа  действительных тарелок бензольно-толуольной смеси при флегмовом числе R=2.12

Построением ступеней между  рабочей и кинетической линиями  определим число действительных тарелок для верхней (укрепляющей) и нижней (исчерпывающей) частей колонны.

Общее число действительных тарелок:

 
4. Выбор конструкционного  материала аппарата и опор

Оборудование современных  процессов нефтепереработки и нефтехимии должно работать при низких и высоких  температурах, значительных механических напряжениях, в агрессивных рабочих  средах. Поэтому материалы, применяемые  в нефтезаводском, нефтехимическом  машиностроении, должны непременно обладать радом свойств:

•  высокой механической прочностью;

•  высокой жаропрочностью, т.е. способностью сохранять необходимую прочность при работе в условиях высоких температур;

•  сохранением свойств после резких теплосъемов;

•  высокими вязкостью и усталостными свойствами (циклической прочностью) – устойчивостью против знакопеременных или повторных однозначных нагрузок;

•  малой склонностью к старению, т.е. к неблагоприятному изменению с течением времени механических свойств, выражающемуся в снижении вязкости и повышении твердости и прочности.

•  высокой коррозионной стойкостью в агрессивных средах, а также жаростойкостью – устойчивостью против химического разрушения при высоких температурах.

Следовательно, конструкционный  материал подбирается в зависимости  от таких важных факторов как тепловая нагрузка аппарата, температурные условия  процесса, физико-химические параметры  рабочих сред, условия теплообмена, характер гидравлических сопротивлений, вид материала и его коррозийную  стойкость, простота устройства и компактность, расположение аппарата, взаимное направление  движения рабочих сред, возможность  очистки поверхности теплообмена  от загрязнений, расход металла на единицу  переданной теплоты и другие технико-экономические  показатели. Для изготовления оборудования применяют углеродистые и легированные стали, серый, модифицированный и легированные чугуны, цветные металлы и сплавы, а также неметаллические материалы.

Химические продукты в  той или иной мере всегда вызывают коррозию материала аппарата, поэтому  для изготовления их применяют различные  металлы (железо, чугун, алюминий) и  их сплавы. Наибольшее применение находят  стали. Стали с низким содержанием  углерода хорошо штампуются, но плохо  обрабатываются резанием. Добавки легирующих элементов улучшают качество сталей и придают им особые свойство (например, хром улучшает механические свойства, износостойкость и коррозионную стойкость; никель повышает прочность, пластичность; кремний увеличивает  жаростойкость).

Информация о работе Расчет тарельчатой ректификационной колонны для разделения бинарной углеводородной смеси бензол-толуол