Автор работы: Пользователь скрыл имя, 15 Ноября 2013 в 02:07, лекция
Этапы эконометрического исследования: • Постановка проблемы • Получение данных, анализ их качества
• Спецификация модели • Оценка параметров • Верификация модели и интерпретация результатов
Цели эконометрического моделирования: • 1) прогноз экономических и социально-экономических показателей, характеризующих состояние и развитие анализируемой системы; • 2) имитация различных возможных сценариев социально-экономического развития анализируемой системы (многовариантные сценарные расчеты, ситуационное моделирование).
Этапы эконометрического исследования
• Постановка проблемы
• Получение данных, анализ их качества
• Спецификация модели
• Оценка параметров
• Верификация модели и интерпретация результатов
Цели эконометрического моделирования
• 1) прогноз экономических и социально-экономических показателей, характеризующих состояние и развитие анализируемой системы;
• 2) имитация различных возможных сценариев социально-экономического развития анализируемой системы (многовариантные сценарные расчеты, ситуационное моделирование).
. (1.15)
В прогнозных расчетах по уравнению регрессии определяется предсказываемое значение как точечный прогноз при , т.е. путем подстановки в уравнение регрессии соответствующего значения . Однако точечный прогноз явно не реален. Поэтому он дополняется расчетом стандартной ошибки , т.е. , и соответственно интервальной оценкой прогнозного значения :
где , а – средняя ошибка прогнозируемого индивидуального значения:
. (1.16)
1.2. Нелинейные модели парной регрессии и корреляции
Различают два класса нелинейных регрессий:
Регрессии нелинейные по включенным переменным приводятся к линейному виду простой заменой переменных (линеаризация), а дальнейшая оценка параметров производится с помощью метода наименьших квадратов. Рассмотрим некоторые функции.
Парабола второй степени приводится к линейному виду с помощью замены: . В результате приходим к двухфакторному уравнению , оценка параметров которого при помощи МНК, приводит к системе следующих нормальных уравнений:
А после обратной замены переменных получим
(1.17)
Парабола второй степени обычно
применяется в случаях, когда
для определенного интервала
значений фактора меняется характер
связи рассматриваемых
Равносторонняя гипербола приводится к линейному уравнению простой заменой: . Система линейных уравнений при применении МНК будет выглядеть следующим образом:
(1.18)
Аналогичным образом приводятся к линейному виду зависимости , и другие.
Несколько иначе обстоит дело с регрессиями нелинейными по оцениваемым параметрам, которые делятся на два типа: нелинейные модели внутренне линейные (приводятся к линейному виду с помощью соответствующих преобразований, например, логарифмированием) и нелинейные модели внутренне нелинейные (к линейному виду не приводятся).
К внутренне линейным моделям относятся, например, степенная функция – , показательная – , экспоненциальная – , логистическая – , обратная – .
К внутренне нелинейным моделям можно, например, отнести следующие модели: , .
Среди нелинейных моделей наиболее часто используется степенная функция , которая приводится к линейному виду логарифмированием:
где . Т.е. МНК мы применяем для преобразованных данных:
а затем потенцированием находим искомое уравнение.
Широкое использование степенной функции связано с тем, что параметр в ней имеет четкое экономическое истолкование – он является коэффициентом эластичности.
Коэффициент эластичности показывает, на сколько процентов измениться в среднем результат, если фактор изменится на 1%. Формула для расчета коэффициента эластичности имеет вид:
. (1.19)
Так как для остальных функций коэффициент эластичности не является постоянной величиной, а зависит от соответствующего значения фактора , то обычно рассчитывается средний коэффициент эластичности:
. (1.20)
Приведем формулы для расчета
средних коэффициентов
Вид функции, |
Первая производная, |
Средний коэффициент эластичности, |
Линеаризация |
1 |
2 |
3 |
4 |
- | |||
Х1=х, Х2=х2 | |||
|
Х=1/х,Y=y | ||
Х=lnх,Y=lny | |||
Х=х,Y=lny | |||
Х=lnх,Y=y | |||
Х=х,Y=lny | |||
|
Х=х,Y=1/y |
Уравнение нелинейной регрессии, так же, как и в случае линейной зависимости, дополняется показателем тесноты связи. В данном случае это индекс корреляции:
. (1.21)
Величина данного показателя находится в пределах: . Чем ближе значение индекса корреляции к единице, тем теснее связь рассматриваемых признаков, тем более надежно уравнение регрессии.
Квадрат индекса корреляции носит название индекса детерминации и характеризует долю дисперсии результативного признака , объясняемую регрессией, в общей дисперсии результативного признака:
, (1.22)
т.е. имеет тот же смысл, что и в линейной регрессии;
Индекс детерминации можно сравнивать с коэффициентом детерминации для обоснования возможности применения линейной функции. Чем больше кривизна линии регрессии, тем величина меньше . А близость этих показателей указывает на то, что нет необходимости усложнять форму уравнения регрессии и можно использовать линейную функцию.
Индекс детерминации используется для проверки существенности в целом уравнения регрессии по -критерию Фишера:
, (1.23)
где – индекс детерминации, – число наблюдений, – число параметров при переменной . Фактическое значение -критерия (1.23) сравнивается с табличным при уровне значимости и числе степеней свободы (для остаточной суммы квадратов) и (для факторной суммы квадратов).
О качестве нелинейного уравнения регрессии можно также судить и по средней ошибке аппроксимации, которая, так же как и в линейном случае, вычисляется по формуле (1.8).
2. Множественная регрессия и корреляция
Парная регрессия может дать хороший результат при моделировании, если влиянием других факторов, воздействующих на объект исследования, можно пренебречь. Если же этим влиянием пренебречь нельзя, то в этом случае следует попытаться выявить влияние других факторов, введя их в модель, т.е. построить уравнение множественной регрессии
где – зависимая переменная (результативный признак), – независимые, или объясняющие, переменные (признаки-факторы).
2.1. Спецификация модели. Отбор факторов при построении
уравнения множественной регрессии
Построение уравнения
Включение в уравнение множественной
регрессии того или иного набора
факторов связано прежде всего с
представлением исследователя о
природе взаимосвязи
Отбор факторов производится на основе
качественного теоретико-
Коэффициенты интеркорреляции (т.е. корреляции между объясняющими переменными) позволяют исключать из модели дублирующие факторы. Считается, что две переменные явно коллинеарны, т.е. находятся между собой в линейной зависимости, если . Если факторы явно коллинеарны, то они дублируют друг друга и один из них рекомендуется исключить из регрессии. Предпочтение при этом отдается не фактору, более тесно связанному с результатом, а тому фактору, который при достаточно тесной связи с результатом имеет наименьшую тесноту связи с другими факторами. В этом требовании проявляется специфика множественной регрессии как метода исследования комплексного воздействия факторов в условиях их независимости друг от друга.
По величине парных коэффициентов
корреляции обнаруживается лишь явная
коллинеарность факторов. Наибольшие
трудности в использовании
Для оценки мультиколлинеарности факторов может использоваться определитель матрицы парных коэффициентов корреляции между факторами.
Чем ближе к нулю определитель матрицы межфакторной корреляции, тем сильнее мультиколлинеарность факторов и ненадежнее результаты множественной регрессии. И, наоборот, чем ближе к единице определитель матрицы межфакторной корреляции, тем меньше мультиколлинеарность факторов.
Существует ряд подходов преодоления сильной межфакторной корреляции. Самый простой путь устранения мультиколлинеарности состоит в исключении из модели одного или нескольких факторов. Другой подход связан с преобразованием факторов, при котором уменьшается корреляция между ними.
При отборе факторов также рекомендуется пользоваться следующим правилом: число включаемых факторов обычно в 6–7 раз меньше объема совокупности, по которой строится регрессия. Если это соотношение нарушено, то число степеней свободы остаточной дисперсии очень мало. Это приводит к тому, что параметры уравнения регрессии оказываются статистически незначимыми, а -критерий меньше табличного значения.
2.2. Метод наименьших квадратов (МНК).
Свойства оценок на основе МНК
Возможны разные виды уравнений множественной регрессии: линейные и нелинейные.
Ввиду четкой интерпретации параметров наиболее широко используется линейная функция. В линейной множественной регрессии параметры при называются коэффициентами «чистой» регрессии. Они характеризуют среднее изменение результата с изменением соответствующего фактора на единицу при неизмененном значении других факторов, закрепленных на среднем уровне.
Рассмотрим линейную модель множественной регрессии
. (2.1)
Классический подход к оцениванию параметров линейной модели множественной регрессии основан на методе наименьших квадратов (МНК). МНК позволяет получить такие оценки параметров, при которых сумма квадратов отклонений фактических значений результативного признака от расчетных минимальна:
. (2.2)
Как известно из курса математического анализа, для того чтобы найти экстремум функции нескольких переменных, надо вычислить частные производные первого порядка по каждому из параметров и приравнять их к нулю.
Имеем функцию аргумента:
Находим частные производные первого порядка:
После элементарных преобразований приходим
к системе линейных нормальных уравнений
для нахождения параметров линейного
уравнения множественной
(2.3)
Для двухфакторной модели данная система будет иметь вид:
Метод наименьших квадратов применим
и к уравнению множественной
регрессии в стандартизированно
(2.4)
где – стандартизированные переменные: , , для которых среднее значение равно нулю: , а среднее квадратическое отклонение равно единице: ; – стандартизированные коэффициенты регрессии.
Стандартизованные коэффициенты регрессии показывают, на сколько единиц изменится в среднем результат, если соответствующий фактор изменится на одну единицу при неизменном среднем уровне других факторов. В силу того, что все переменные заданы как центрированные и нормированные, стандартизованные коэффициенты регрессии можно сравнивать между собой. Сравнивая их друг с другом, можно ранжировать факторы по силе их воздействия на результат. В этом основное достоинство стандартизованных коэффициентов регрессии в отличие от коэффициентов «чистой» регрессии, которые несравнимы между собой.