Предмет эконометрики

Автор работы: Пользователь скрыл имя, 15 Ноября 2013 в 02:07, лекция

Краткое описание

Этапы эконометрического исследования: • Постановка проблемы • Получение данных, анализ их качества
• Спецификация модели • Оценка параметров • Верификация модели и интерпретация результатов
Цели эконометрического моделирования: • 1) прогноз экономических и социально-экономических показателей, характеризующих состояние и развитие анализируемой системы; • 2) имитация различных возможных сценариев социально-экономического развития анализируемой системы (многовариантные сценарные расчеты, ситуационное моделирование).

Содержание

Этапы эконометрического исследования
• Постановка проблемы
• Получение данных, анализ их качества
• Спецификация модели
• Оценка параметров
• Верификация модели и интерпретация результатов
Цели эконометрического моделирования
• 1) прогноз экономических и социально-экономических показателей, характеризующих состояние и развитие анализируемой системы;
• 2) имитация различных возможных сценариев социально-экономического развития анализируемой системы (многовариантные сценарные расчеты, ситуационное моделирование).

Вложенные файлы: 1 файл

20895_lekcii_po_ekonometrike.doc

— 1.58 Мб (Скачать файл)

.     (1.15)

В прогнозных расчетах по уравнению  регрессии определяется предсказываемое  значение как точечный прогноз при , т.е. путем подстановки в уравнение регрессии соответствующего значения . Однако точечный прогноз явно не реален. Поэтому он дополняется расчетом стандартной ошибки , т.е. , и соответственно интервальной оценкой прогнозного значения :

,

где , а – средняя ошибка прогнозируемого индивидуального значения:

.    (1.16)

1.2. Нелинейные модели парной регрессии и корреляции

Различают два класса нелинейных регрессий:

  1. Регрессии, нелинейные относительно включенных в анализ объясняющих переменных, но линейные по оцениваемым параметрам, например
    • полиномы различных степеней – , ;
    • равносторонняя гипербола – ;
    • полулогарифмическая функция – .
  1. Регрессии, нелинейные по оцениваемым параметрам, например
    • степенная – ;
    • показательная – ;
    • экспоненциальная – .

Регрессии нелинейные по включенным переменным приводятся к линейному виду простой заменой переменных (линеаризация), а дальнейшая оценка параметров производится с помощью метода наименьших квадратов. Рассмотрим некоторые функции.

Парабола второй степени  приводится к линейному виду с помощью замены: . В результате приходим к двухфакторному уравнению , оценка параметров которого при помощи МНК, приводит к системе следующих нормальных уравнений:

А после обратной замены переменных получим

  (1.17)

Парабола второй степени обычно применяется в случаях, когда  для определенного интервала  значений фактора меняется характер связи рассматриваемых признаков: прямая связь меняется на обратную или обратная на прямую.

Равносторонняя гипербола  приводится к линейному уравнению простой заменой: . Система линейных уравнений при применении МНК будет выглядеть следующим образом:

    (1.18)

Аналогичным образом приводятся к  линейному виду зависимости  , и другие.

Несколько иначе обстоит дело с  регрессиями нелинейными по оцениваемым  параметрам, которые делятся на два  типа: нелинейные модели внутренне линейные (приводятся к линейному виду с помощью соответствующих преобразований, например, логарифмированием) и нелинейные модели внутренне нелинейные (к линейному виду не приводятся).

К внутренне линейным моделям относятся, например, степенная функция – , показательная – , экспоненциальная – , логистическая – , обратная – .

К внутренне нелинейным моделям можно, например, отнести следующие модели: , .

Среди нелинейных моделей наиболее часто используется степенная функция  , которая приводится к линейному виду логарифмированием:

,

где . Т.е. МНК мы применяем для преобразованных данных:

а затем потенцированием находим  искомое уравнение.

Широкое использование степенной  функции связано с тем, что  параметр в ней имеет четкое экономическое истолкование – он является коэффициентом эластичности.

Коэффициент эластичности показывает, на сколько процентов измениться в среднем результат, если фактор изменится на 1%. Формула для расчета коэффициента эластичности имеет вид:

.     (1.19)

Так как для остальных функций  коэффициент эластичности не является постоянной величиной, а зависит  от соответствующего значения фактора  , то обычно рассчитывается средний коэффициент эластичности:

.     (1.20)

Приведем формулы для расчета  средних коэффициентов эластичности для наиболее часто используемых типов уравнений регрессии:

Таблица 1.5

Вид функции,

Первая производная,

Средний коэффициент эластичности,

Линеаризация

1

2

3

4

-

Х1=х, Х22

Х=1/х,Y=y

Х=lnх,Y=lny

Х=х,Y=lny

Х=lnх,Y=y

Х=х,Y=lny

 

Х=х,Y=1/y


Уравнение нелинейной регрессии, так же, как и в случае линейной зависимости, дополняется показателем тесноты связи. В данном случае это индекс корреляции:

.     (1.21)

Величина данного показателя находится  в пределах: . Чем ближе значение индекса корреляции к единице, тем теснее связь рассматриваемых признаков, тем более надежно уравнение регрессии.

Квадрат индекса корреляции носит  название индекса детерминации и  характеризует долю дисперсии результативного признака , объясняемую регрессией, в общей дисперсии результативного признака:

,    (1.22)

т.е. имеет тот же смысл, что и  в линейной регрессии;

.

Индекс детерминации можно сравнивать с коэффициентом детерминации для обоснования возможности применения линейной функции. Чем больше кривизна линии регрессии, тем величина меньше . А близость этих показателей указывает на то, что нет необходимости усложнять форму уравнения регрессии и можно использовать линейную функцию.

Индекс  детерминации используется для проверки существенности в целом уравнения  регрессии по -критерию Фишера:

,    (1.23)

где – индекс детерминации, – число наблюдений, – число параметров при переменной . Фактическое значение -критерия (1.23) сравнивается с табличным при уровне значимости и числе степеней свободы (для остаточной суммы квадратов) и (для факторной суммы квадратов).

О качестве нелинейного уравнения  регрессии можно также судить и по средней ошибке аппроксимации, которая, так же как и в линейном случае, вычисляется по формуле (1.8).

 

2. Множественная регрессия и корреляция

Парная регрессия может дать хороший результат при моделировании, если влиянием других факторов, воздействующих на объект исследования, можно пренебречь. Если же этим влиянием пренебречь нельзя, то в этом случае следует попытаться выявить влияние других факторов, введя их в модель, т.е. построить уравнение множественной регрессии

,

где – зависимая переменная (результативный признак), – независимые, или объясняющие, переменные (признаки-факторы).

2.1. Спецификация модели. Отбор факторов при построении

уравнения множественной регрессии

Построение уравнения множественной  регрессии начинается с решения  вопроса о спецификации модели. Он включает в себя два круга вопросов: отбор факторов и выбор вида уравнения  регрессии.

Включение в уравнение множественной  регрессии того или иного набора факторов связано прежде всего с  представлением исследователя о  природе взаимосвязи моделируемого  показателя с другими экономическими явлениями. Факторы, включаемые во множественную  регрессию, должны отвечать следующим требованиям.

  1. Они должны быть количественно измеримы. Если необходимо включить в модель качественный фактор, не имеющий количественного измерения, то ему нужно придать количественную определенность.
  2. Факторы не должны быть интеркоррелированы и тем более находиться в точной функциональной связи.

Отбор факторов производится на основе качественного теоретико-экономического анализа. Однако теоретический анализ часто не позволяет однозначно ответить на вопрос о количественной взаимосвязи рассматриваемых признаков и целесообразности включения фактора в модель. Поэтому отбор факторов обычно осуществляется в две стадии: на первой подбираются факторы исходя из сущности проблемы; на второй – на основе матрицы показателей корреляции определяют статистики для параметров регрессии.

Коэффициенты интеркорреляции (т.е. корреляции между объясняющими переменными) позволяют исключать из модели дублирующие  факторы. Считается, что две переменные явно коллинеарны, т.е. находятся между собой в линейной зависимости, если . Если факторы явно коллинеарны, то они дублируют друг друга и один из них рекомендуется исключить из регрессии. Предпочтение при этом отдается не фактору, более тесно связанному с результатом, а тому фактору, который при достаточно тесной связи с результатом имеет наименьшую тесноту связи с другими факторами. В этом требовании проявляется специфика множественной регрессии как метода исследования комплексного воздействия факторов в условиях их независимости друг от друга.

По величине парных коэффициентов  корреляции обнаруживается лишь явная  коллинеарность факторов. Наибольшие трудности в использовании аппарата множественной регрессии возникают  при наличии мультиколлинеарности факторов, когда более чем два  фактора связаны между собой линейной зависимостью, т.е. имеет место совокупное воздействие факторов друг на друга.

Для оценки мультиколлинеарности факторов может использоваться определитель матрицы парных коэффициентов корреляции между факторами.

Чем ближе к нулю определитель матрицы межфакторной корреляции, тем сильнее мультиколлинеарность факторов и ненадежнее результаты множественной регрессии. И, наоборот, чем ближе к единице определитель матрицы межфакторной корреляции, тем меньше мультиколлинеарность факторов.

Существует ряд подходов преодоления  сильной межфакторной корреляции. Самый  простой путь устранения мультиколлинеарности состоит в исключении из модели одного или нескольких факторов. Другой подход связан с преобразованием факторов, при котором уменьшается корреляция между ними.

При отборе факторов также рекомендуется  пользоваться следующим правилом: число  включаемых факторов обычно в 6–7 раз  меньше объема совокупности, по которой  строится регрессия. Если это соотношение  нарушено, то число степеней свободы остаточной дисперсии очень мало. Это приводит к тому, что параметры уравнения регрессии оказываются статистически незначимыми, а -критерий меньше табличного значения.

2.2. Метод наименьших квадратов (МНК).

Свойства оценок на основе МНК

Возможны разные виды уравнений  множественной регрессии: линейные и нелинейные.

Ввиду четкой интерпретации параметров наиболее широко используется линейная функция. В линейной множественной регрессии параметры при называются коэффициентами «чистой» регрессии. Они характеризуют среднее изменение результата с изменением соответствующего фактора на единицу при неизмененном значении других факторов, закрепленных на среднем уровне.

Рассмотрим линейную модель множественной регрессии

.   (2.1)

Классический подход к оцениванию параметров линейной модели множественной  регрессии основан на методе наименьших квадратов (МНК). МНК позволяет получить такие оценки параметров, при которых сумма квадратов отклонений фактических значений результативного признака от расчетных минимальна:

.   (2.2)

Как известно из курса математического  анализа, для того чтобы найти экстремум функции нескольких переменных, надо вычислить частные производные первого порядка по каждому из параметров и приравнять их к нулю.

Имеем функцию  аргумента:

.

Находим частные производные первого порядка:

После элементарных преобразований приходим к системе линейных нормальных уравнений  для нахождения параметров линейного  уравнения множественной регрессии (2.1):

  (2.3)

Для двухфакторной модели данная система будет иметь вид:

Метод наименьших квадратов применим и к уравнению множественной  регрессии в стандартизированном масштабе:

   (2.4)

где – стандартизированные переменные: , , для которых среднее значение равно нулю: , а среднее квадратическое отклонение равно единице: ; – стандартизированные коэффициенты регрессии.

Стандартизованные коэффициенты регрессии  показывают, на сколько единиц изменится  в среднем результат, если соответствующий  фактор изменится на одну единицу при неизменном среднем уровне других факторов. В силу того, что все переменные заданы как центрированные и нормированные, стандартизованные коэффициенты регрессии можно сравнивать между собой. Сравнивая их друг с другом, можно ранжировать факторы по силе их воздействия на результат. В этом основное достоинство стандартизованных коэффициентов регрессии в отличие от коэффициентов «чистой» регрессии, которые несравнимы между собой.

Информация о работе Предмет эконометрики