Автор работы: Пользователь скрыл имя, 15 Ноября 2013 в 02:07, лекция
Этапы эконометрического исследования: • Постановка проблемы • Получение данных, анализ их качества
• Спецификация модели • Оценка параметров • Верификация модели и интерпретация результатов
Цели эконометрического моделирования: • 1) прогноз экономических и социально-экономических показателей, характеризующих состояние и развитие анализируемой системы; • 2) имитация различных возможных сценариев социально-экономического развития анализируемой системы (многовариантные сценарные расчеты, ситуационное моделирование).
Этапы эконометрического исследования
• Постановка проблемы
• Получение данных, анализ их качества
• Спецификация модели
• Оценка параметров
• Верификация модели и интерпретация результатов
Цели эконометрического моделирования
• 1) прогноз экономических и социально-экономических показателей, характеризующих состояние и развитие анализируемой системы;
• 2) имитация различных возможных сценариев социально-экономического развития анализируемой системы (многовариантные сценарные расчеты, ситуационное моделирование).
Применяя МНК к уравнению
множественной регрессии в
(2.5)
где и – коэффициенты парной и межфакторной корреляции.
Коэффициенты «чистой» регрессии связаны со стандартизованными коэффициентами регрессии следующим образом:
. (2.6)
Поэтому можно переходить от уравнения регрессии в стандартизованном масштабе (2.4) к уравнению регрессии в натуральном масштабе переменных (2.1), при этом параметр определяется как
Рассмотренный смысл стандартизованных
коэффициентов регрессии
На основе
линейного уравнения
(2.7)
могут быть найдены частные уравнения регрессии:
(2.8)
т.е. уравнения регрессии, которые связывают результативный признак с соответствующим фактором при закреплении остальных факторов на среднем уровне. В развернутом виде систему (2.8) можно переписать в виде:
При подстановке в эти уравнения средних значений соответствующих факторов они принимают вид парных уравнений линейной регрессии, т.е. имеем
(2.9)
где
В отличие от парной регрессии частные уравнения регрессии характеризуют изолированное влияние фактора на результат, ибо другие факторы закреплены на неизменном уровне. Эффекты влияния других факторов присоединены в них к свободному члену уравнения множественной регрессии. Это позволяет на основе частных уравнений регрессии определять частные коэффициенты эластичности:
, (2.10)
где – коэффициент регрессии для фактора в уравнении множественной регрессии, – частное уравнение регрессии.
Наряду с частными коэффициентами эластичности могут быть найдены средние по совокупности показатели эластичности:
, (2.11)
которые показывают на сколько процентов в среднем изменится результат, при изменении соответствующего фактора на 1%. Средние показатели эластичности можно сравнивать друг с другом и соответственно ранжировать факторы по силе их воздействия на результат.
2.3. Проверка существенности факторов
и показатели качества регрессии
Практическая значимость уравнения
множественной регрессии
Показатель множественной
Независимо от формы связи показатель множественной корреляции может быть найден как индекс множественной корреляции:
. (2.12)
Границы изменения индекса
Расчет индекса множественной
корреляции предполагает определение
уравнения множественной
. (2.13)
Можно пользоваться следующей формулой индекса множественной детерминации:
. (2.14)
При линейной зависимости признаков формула индекса множественной корреляции может быть представлена следующим выражением:
, (2.15)
где – стандартизованные коэффициенты регрессии; – парные коэффициенты корреляции результата с каждым фактором.
Формула индекса множественной корреляции для линейной регрессии получила название линейного коэффициента множественной корреляции, или, что то же самое, совокупного коэффициента корреляции.
Возможно также при линейной
зависимости определение
, (2.16)
где
– определитель матрицы парных коэффициентов корреляции;
– определитель матрицы межфакторной корреляции.
В рассмотренных показателях
Скорректированный индекс множественной корреляции содержит поправку на число степеней свободы, а именно остаточная сумма квадратов делится на число степеней свободы остаточной вариации , а общая сумма квадратов отклонений на число степеней свободы в целом по совокупности .
Формула скорректированного
индекса множественной
, (2.17)
где – число параметров при переменных ; – число наблюдений.
Поскольку , то величину скорректированного индекса детерминации можно представить в виде:
. (2.17а)
Чем больше величина , тем сильнее различия и .
Как было показано
выше, ранжирование факторов, участвующих
во множественной линейной регрессии,
может быть проведено через
Частные коэффициенты корреляции характеризуют тесноту связи между результатом и соответствующим фактором при элиминировании (устранении влияния) других факторов, включенных в уравнение регрессии.
Показатели частной корреляции представляют собой отношение сокращения остаточной дисперсии за счет дополнительного включения в анализ нового фактора к остаточной дисперсии, имевшей место до введения его в модель.
В общем виде при наличии факторов для уравнения
коэффициент частной корреляции, измеряющий влияние на фактора , при неизменном уровне других факторов, можно определить по формуле:
, (2.18)
где – множественный коэффициент детерминации всех факторов с результатом; – тот же показатель детерминации, но без введения в модель фактора .
При двух факторах формула (2.18) примет вид:
; . (2.18а)
Порядок частного коэффициента корреляции определяется количеством факторов, влияние которых исключается. Например, – коэффициент частной корреляции первого порядка. Соответственно коэффициенты парной корреляции называются коэффициентами нулевого порядка. Коэффициенты частной корреляции более высоких порядков можно определить через коэффициенты частной корреляции более низких порядков по рекуррентной формуле:
. (2.19)
При двух факторах данная формула примет вид:
; . (2.19а)
Для уравнения регрессии с тремя факторами частные коэффициенты корреляции второго порядка определяются на основе частных коэффициентов корреляции первого порядка. Так, по уравнению возможно исчисление трех частных коэффициентов корреляции второго порядка:
каждый из которых определяется по рекуррентной формуле. Например, при имеем формулу для расчета :
. (2.20)
Рассчитанные по рекуррентной формуле
частные коэффициенты корреляции изменяются
в пределах от –1 до +1, а по формулам
через множественные
Из приведенных выше формул частных коэффициентов корреляции видна связь этих показателей с совокупным коэффициентом корреляции. Зная частные коэффициенты корреляции (последовательно первого, второго и более высокого порядка), можно определить совокупный коэффициент корреляции по формуле:
. (2.21)
В частности, для двухфакторного уравнения формула (2.21) принимает вид:
. (2.21)
При полной зависимости результативного признака от исследуемых факторов коэффициент совокупного их влияния равен единице. Из единицы вычитается доля остаточной вариации результативного признака , обусловленная последовательно включенными в анализ факторами. В результате подкоренное выражение характеризует совокупное действие всех исследуемых факторов.
Значимость уравнения
, (2.22)
где – факторная сумма квадратов на одну степень свободы; – остаточная сумма квадратов на одну степень свободы; – коэффициент (индекс) множественной детерминации; – число параметров при переменных (в линейной регрессии совпадает с числом включенных в модель факторов); – число наблюдений.
Оценивается значимость не только уравнения в целом, но и фактора, дополнительно включенного в регрессионную модель. Необходимость такой оценки связана с тем, что не каждый фактор, вошедший в модель, может существенно увеличивать долю объясненной вариации результативного признака. Кроме того, при наличии в модели нескольких факторов они могут вводиться в модель в разной последовательности. Ввиду корреляции между факторами значимость одного и того же фактора может быть разной в зависимости от последовательности его введения в модель. Мерой для оценки включения фактора в модель служит частный -критерий, т.е. .
Частный -критерий построен на сравнении прироста факторной дисперсии, обусловленного влиянием дополнительно включенного фактора, с остаточной дисперсией на одну степень свободы по регрессионной модели в целом. В общем виде для фактора частный -критерий определится как
, (2.23)
где – коэффициент множественной детерминации для модели с полным набором факторов, – тот же показатель, но без включения в модель фактора , – число наблюдений, – число параметров в модели (без свободного члена).
Фактическое значение частного -критерия сравнивается с табличным при уровне значимости и числе степеней свободы: 1 и . Если фактическое значение превышает , то дополнительное включение фактора в модель статистически оправданно и коэффициент чистой регрессии при факторе статистически значим. Если же фактическое значение меньше табличного, то дополнительное включение в модель фактора не увеличивает существенно долю объясненной вариации признака , следовательно, нецелесообразно его включение в модель; коэффициент регрессии при данном факторе в этом случае статистически незначим.
Для двухфакторного уравнения частные -критерии имеют вид:
, . (2.23а)
С помощью частного -критерия можно проверить значимость всех коэффициентов регрессии в предположении, что каждый соответствующий фактор вводился в уравнение множественной регрессии последним.
Частный -критерий оценивает значимость коэффициентов чистой регрессии. Зная величину , можно определить и -критерий для коэффициента регрессии при -м факторе, , а именно:
. (2.24)
Оценка значимости коэффициентов чистой регрессии по -критерию Стьюдента может быть проведена и без расчета частных -критериев. В этом случае, как и в парной регрессии, для каждого фактора используется формула:
, (2.25)
где – коэффициент чистой регрессии при факторе , – средняя квадратическая (стандартная) ошибка коэффициента регрессии .
Для уравнения множественной
, (2.26)
где – среднее квадратическое отклонение для признака , – среднее квадратическое отклонение для признака , – коэффициент детерминации для уравнения множественной регрессии, – коэффициент детерминации для зависимости фактора со всеми другими факторами уравнения множественной регрессии; – число степеней свободы для остаточной суммы квадратов отклонений.
3. Системы эконометрических
В последние десятилетия в