Эволюция среды обитания, переход от биосферы к техносфере

Автор работы: Пользователь скрыл имя, 06 Декабря 2012 в 09:18, лекция

Краткое описание

В жизненном цикле человек и окружающая его среда обитания образуют постоянно действующую систему «человек – среда обитания».
Среда обитания – окружающая человека среда, обусловленная в данный момент совокупностью факторов (физических, химических, биологических, социальных), способных оказывать прямое или косвенное, немедленное или отдаленное воздействие на деятельность человека его здоровье и потомство.

Вложенные файлы: 1 файл

БЖД лекции домашний.doc

— 721.00 Кб (Скачать файл)

При горении принято подразделять два режима: режим, в котором горючее  вещество образует однородную смесь  с кислородом или воздухом до начала горения (кинетическое пламя), и режим, в котором горючее и окислитель первоначально разделены, а горение  протекает в области их перемешивания (диффузионное горение). За редким исключением при обширных пожарах встречается диффузионный режим горения, при котором скорость горения во многом определяется скоростью поступления в зону горения образующихся летучих горючих веществ. В случае горения твердых материалов скорость поступления летучих веществ непосредственно связана с интенсивностью теплообмена в зоне контакта пламени и твердого горючего вещества. Массовая скорость выгорания [г/(м2×с)] зависят от теплового потока, воспринимаемого твердым горючим, и его физико-химических свойств. В общем виде эту зависимость  можно представить как:

,

где  Qпр – тепловой поток от зоны горения к твердому горючему, кВт/м2;

Qух – теплопотери твердого горючего в окружающую среду, кВт/м2;

r – теплота, необходимая для образования летучих веществ, кДж/г; для жидкостей представляет собой удельную теплоту парообразования.

Тепловой поток, поступающий из зоны горения к твердому горючему, существенным образом зависит от энергии, выделенной в процессе горения, и от условий теплообмена между зоной горения и поверхностью твердого горючего. В этих условиях режим и скорость горения могут в значительной степени зависеть от физического состояния горючего вещества, его распределения в пространстве и характеристик окружающей среды.

Пожаровзрывоопасность веществ характеризуются  многим параметрами: температурами  воспламенения, вспышки, самовозгорания, нижним (НКПВ) и верхним (ВКПВ) концентрационными  пределами воспламенения; скоростью  распространения пламени, линейной и массовой (в граммах в секунду) скоростями горения и выгорания веществ.

Под воспламенением понимается возгорание (возникновение горения под воздействием источника зажигания), сопровождающееся появлением пламени. Температура воспламенения – минимальная температура горючего вещества, при которой происходит загорание (неконтролируемое горение вне специального очага).

Температура вспышки – минимальная  температура горючего вещества, при  которой над его поверхностью образуются газы и пары, способные вспыхивать (вспыхивать – быстро сгорать без образования сжатых газов) в воздухе от источника зажигания (горящего или раскаленного тела, а также электрического разряда, обладающего запасом энергии и температурой, достаточными для возникновения горения вещества). Температура самовозгарания – самая низкая температура, при которой происходит резкое увеличение скорости экзотермической реакции (при отсутствии источника зажигания), заканчивающееся пламенным горением. Концентрационные пределы воспламенения – минимальная (нижний предел) и максимальная (верхний предел) концентрации, которые характеризуют области воспламенения.

  Температура вспышки, самовоспламенения и воспламенения горючих жидкостей определяется экспериментально или расчетным путем согласно ГОСТ 12.1.044-89. Нижний и верхний концентрационный пределы воспламенения газов, паров и горючих пылей также могут определяться экспериментально или расчетным путем согласно ГОСТ 12.1.041-83*, ГОСТ 12.1.044-89 или руководству по «Расчету основных показателей пожаровзрывоопасности веществ и материалов».

Пожаровзрывоопсность производства определяется параметрами пожароопасности  и количеством используемых в  технологических процессах материалов  и веществ, конструктивными особенностями  и режимами работы оборудования, наличием возможных источников зажигания и условий для быстрого распространения огня в случае пожара.

Средства локализации и тушения  пожаров. К основным видам техники, предназначенной для защиты различных  объектов от пожаров, относятся средства сигнализации и пожаротушения.

Пожарная сигнализация должна быстро и точно сообщать о пожаре с  указанием места его возникновения. Наиболее надежной системой пожарной сигнализации является электрическая  пожарная сигнализация. Наиболее совершенные виды такой сигнализации дополнительно обеспечивают автоматический ввод в действие предусмотренных на объекте средств пожаротушения.

Надежность электрической системы  сигнализации обеспечивается тем, что  все ее элементы и связи между  ними постоянно находятся во включенном состоянии (под напряжением). Важнейшим элементом системы сигнализации являются пожарные извещатели, которые преобразуют физические параметры, характеризующие пожар в электрические сигналы. По способу приведения в действие извещатели подразделяют на ручные и автоматические. Ручные извещатели выдают в линию связи электрический сигнал определенной формы в момент нажатия кнопки. Автоматические пожарные извещатели включаются при изменении параметров окружающей среды в момент возникновения пожара. В зависимости от фактора, вызывающего срабатывание датчика, извещатели подразделяются на тепловые, дымовые, световые и комбинированные. Наибольшее распространение получили тепловые извещатели, чувствительные элементы которых могут быть биметаллическими, термопарными, полупроводниковыми.

Дымовые пожарные извещатели, реагирующие  на дым, имеют в качестве чувствительного  элемента фотоэлемент или ионизационные  камеры, а также дифференциальные фотореле. Дымовые извещатели бывают двух типов: точечные, сигнализирующие о появлении дыма в месте их установки, и линейно-объемные, работающие на принципе затенения светового луча между приемником и излучателем.

Световые пожарные извещатели основаны на фиксации различных составных  частей спектра открытого пламени. Чувствительные элементы таких датчиков реагируют на ультрафиолетовую или инфракрасную область спектра оптического излучения.

Инерционность первичных датчиков является важной характеристикой. Наибольшей инерционностью обладают тепловые датчики, наименьшей – световые.

Комплекс мероприятий, направленных на устранение причин возникновения  пожара и создание условий, при которых  продолжение горения будет невозможным, называется пожаротушением.

Для ликвидации процесса горения необходимо прекратить подачу  в зону горения  либо горючего, либо окислителя, или  уменьшить подвод теплового потока в зону реакции. Это достигается:

  • сильным охлаждением очага горения или горящего материала с помощью веществ (например, воды), обладающих большой теплоемкостью;
  • изоляцией очага горения от атмосферного воздуха или снижением концентрации кислорода в воздухе путем подачи в зону горения инертных компонентов;
  • применением специальных химических средств, тормозящих скорость реакции окисления;
  • механическим срывом пламени сильной струей газа или воды;
  • созданием условий огнепреграждения, при которых пламя распространяется через узкие каналы, сечение которых меньше тушащего диаметра.

Для достижения вышеуказанных эффектов в настоящее время в качестве средств тушения используют:

  • воду, которая попадает в очаг пожара сплошной или распыленной струей;
  • различные виды пен (химическая или воздушно-механическая), представляющих собой пузырьки воздуха или углекислого газа, окруженные тонкой пленкой воды;
  • инертные газовые разбавители, в качестве которых могут использоваться: углекислый газ, азот, аргон, водяной пар, дымовые газы и т.д.;
  • гомогенные ингибиторы – огнетушащие порошки;
  • комбинированные составы.

Вода является наиболее широко применяемым средством тушения.

Обеспечение предприятий и регионов необходимым объемом воды для  пожаротушения обычно производится из общей (городской) сети водопровода  или из пожарных водоемов и емкостей. Требования к системам противопожарного водоснабжения изложены в СНиП 2.04.02-84 «Водоснабжение. Наружные сети и сооружения» и в СНиП 2.04.01-85 «Внутренний водопровод и канализация зданий».

Противопожарные водопроводы принято  подразделять на водопроводы низкого  и среднего давления. Свободный напор  при пожаротушении в водопроводной сети низкого давления при расчетном расходе должен быть не менее 10 м от уровня поверхности земли, а требуемый для пожаротушения напор воды создается передвижными насосами устанавливаемыми на гидранты. В сети высокого давления должна обеспечиваться высота компактной струи не менее 10 метров при полном расчетном расходе воды и расположении ствола на уровне наивысшей точки самого высокого здания. Системы высокого давления более дорогие вследствие необходимости использовать трубопроводы повышенной прочности, а также дополнительные водонапорные баки на соответствующей высоте или устройства насосной водопроводной станции. Поэтому системы высокого давления предусматривают на промышленных предприятиях, удаленных от пожарных частей более чем на 2 км, а также в населенных пунктах с числом жителей до 500 тыс. человек.

Нормируемый расход воды на пожаротушение  складывается из расходов на наружное и внутреннее пожаротушение. При  нормировании расхода воды на наружное пожаротушение исходят из возможного числа одновременных пожаров в населенном пункте, возникающих в течении трех смежных часов, в зависимости от численности жителей и этажности зданий (СНиП 2.04.02-84). Нормы расхода и напор воды во внутренних водопроводах в общественных, жилых и вспомогательных зданиях регламентируются СНиП 2.04.01-85 в зависимости от их этажности, длины коридоров, объема, назначения.

Для пожаротушения в помещениях используют автоматические огнегасительные  устройства. Наиболее широкое распространение  получили установки, которые в качестве распределительных устройств используют спринклерные или дренчерные головки.

Спринклерная головка – это  прибор, автоматически открывающий  выход воды при повышении температуры  внутри помещения, вызванной возникновением пожара. Сприклерные установки включаются автоматически при повышении температуры среды внутри помещения до заданного предела. Датчиком является сама спринклерная головка, снабженная легкоплавким замком, который расплавляется при повышении температуры и открывает отверстие в трубопроводе с водой над очагом пожара. Спринклерная установка состоит из сети водопроводных питательных и оросительных труб, установленных под перекрытием. В оросительные трубы на определенном расстоянии друг от друга ввернуты спринклерные головки. Один спринклер устанавливают на площади 6-9 м2 помещения в зависимости от пожарной опасности производства. Если в защищаемом помещении температура воздуха может опускаться ниже +40С, то такие объекты защищают воздушными сприклерными системами, отличающимися от водяных тем, что такие системы заполнены водой только до контрольно-сигнального устройства, распределительные трубопроводы, расположенные выше этого устройства в неотапливаемом помещении, заполняются воздухом, нагнетаемым специальным компрессором.

Дренчерные установки по устройству близки к сплинкерным и отличаются от последних тем, что оросители на распределительных трубопроводах не имеют легкоплавкого замка и отверстия постоянно открыты. Дренчерные системы предназначены для образования водяных завес, для защиты здания от возгорания при пожаре в соседнем сооружении, для образования водяных завес в помещении с целью предупреждения распространения огня и для противопожарной защиты в условиях повышенной пожарной  опасности. Дренчерная система включается вручную или автоматически по сигналу автоматического извещателя о пожаре с помощью контрольно-пускового узла, размещаемого на магистральном трубопроводе.

В спринклерных и дренчерных системах могут применяться и воздушно-механические пены. Основным огнегасительным свойством пены является изоляция зоны горения путем образования на поверхности горящей жидкости паронепроницаемого слоя определенной структуры и стойкости. Состав воздушно-механической пены следующий: 90 % воздуха, 9,6 % жидкости (воды) и 0,4 % пенообразующего вещества. Характеристиками пены, определяющими ее огнегасящие свойства, являются стойкость и кратность. Стойкость – это способность пены сохраняться при высокой температуре во времени; воздушно-механическая пена имеет стойкость 30-45 минут, кратность – отношение объема пены к объему жидкости, из которой она получена, достигающая 8-12.

Получают пену в стационарных, передвижных, переносных устройствах и огнетушителях. В качестве пожаротушащего вещества широкое распространение получила пена следующего состава: 80 % углекислого газа, 19,7  % жидкости (воды) и 0,3 % пенообразующего вещества. Кратность химической пены обычно равна 5, стойкость около 1 часа.

Ликвидация последствий чрезвычайных ситуаций

 

Ликвидация чрезвычайной ситуации осуществляется силами и средствами предприятий, учреждений и организаций независимо от их организационно-правовой формы, органов местного самоуправления, органов исполнительной власти субъектов Российской Федерации, на территории которых сложилась чрезвычайная ситуация, под руководством соответствующих комиссий по чрезвычайным ситуациям.

К ликвидации чрезвычайных ситуаций могут привлекаться Вооруженные  силы Российской Федерации, Войска гражданской  обороны Российской Федерации, другие войска и воинские формирования в  соответствии с законодательством Российской Федерации.

Ликвидация чрезвычайной ситуации считается завершенной по окончании  проведения аварийно-спасательных и  других неотложных работ.

Спасательные работы. Спасательные и другие неотложные работы в очагах поражения включают:

Информация о работе Эволюция среды обитания, переход от биосферы к техносфере