Автор работы: Пользователь скрыл имя, 10 Мая 2012 в 16:49, курсовая работа
Генетика оформилась как наука после переоткрытия законов Менделя. Памятной
датой в биологии стала весна 1953 года. Исследователи американец Д. Уотсон
и англичанин Ф. Крик расшифровали «святая святых» наследственности - ее
генетической код. Именно с той поры слово «ДНК» - дезоксирибонуклеиновая
кислота стало известно не только узкому кругу ученых, но и каждому
образованному человеку во всем мире. Бурный вековой период ее развития
ознаменован в последние годы расшифровкой нуклеотидного состава «молекулы
жизни» ДНК у десятков видов вирусов, бактерий, грибов и многоклеточных
организмов.
Введение |3 | |Глава 1. Предмет генетики |5 | |1.1.
Современные представления о гене |5 | |1.2. Строение гена |5 | |1.3.
Основные понятия и методы генетики |6 | |Глава 2. Наследственность |8 |
|2.1. Исследования Менделя |8 | |2.2. Наследование при моногибридном
скрещивании и закон расщепления |8 | |2.3. Возвратное, или анализирующее
скрещивание |9 | |2.4. Дигибридное скрещивание и закон независимого
распределения |9 | |2.5. Краткое изложение сути гипотез Менделя |10 | |2.6.
Сцепление |10 | |2.7. Определение пола |11 | |2.8. Наследование, сцепленное
с полом |13 | |2.9. Неполное доминирование |14 | |2.10. Изменчивость |14 |
|2.11. Влияние среды |14 | |2.12. Источники изменчивости |15 | |2.13.
Мутации |16 | |2.14. Генные мутации |16 | |2.15. Летальные мутации |17 |
|2.16. Значение мутаций |18 | |Глава 3. Современные возможности и
достижения генетики и генной инженерии |19 | |3.1. Химеры |19 | |3.2.
Трансгенные организмы |19 | |3.3. Немного о клонировании |20 | |3.4.
Лечение и предупреждение некоторых наследственных болезней человека |21 |
|3.5. Медико-генетическое консультирование |21 | |Заключение |22 |
|Литература
Мутация приводит к изменению генотипа, которое может быть унаследовано
клетками, происходящими от мутантной клетки в результате митоза или мейоза.
Мутирование может вызывать изменения каких-либо признаков в популяции.
Мутации, возникшие в половых клетках, передаются следующим поколениям
организмов, тогда как мутации, возникшие в соматических клетках,
наследуются только дочерними клетками, образовавшимися путем митоза и такие
мутации называют соматическими.
Мутации, возникающие в результате изменения числа или макроструктуры
хромосом, известны под названием хромосомных мутаций или хромосомных
аберраций (перестроек). Иногда хромосомы так сильно изменяются, что это
можно увидеть под микроскопом. Но термин «мутация» используют главным
образом для обозначения изменения структуры ДНК в одном локусе, когда
происходит так называемая генная, или точечная, мутация.
Представление о мутации как о причине внезапного появления нового признака
было впервые выдвинуто в 1901 г. голландским ботаником Гуго де Фризом,
изучавшим наследственность у энотеры Oenothera lamarckiana. Спустя 9 лет
Т.Морган начал изучать мутации у дрозофилы, и вскоре при участии генетиков
всего мира у нее было идентифицировано более 500 мутаций.
2.14. Генные мутации
Внезапные спонтанные изменения фенотипа, которые нельзя связать с обычными
генетическими явлениями или микроскопическими данными о наличии хромосомных
аберраций, можно объяснить только изменениями в структуре отдельных генов.
Генная, или точечная (поскольку она относится к определенному генному
локусу), мутация – результат изменения нуклеотидной последовательности
молекулы ДНК в определенном участке хромосомы. Такое изменение
последовательности оснований в данном гене воспроизводится при транскрипции
в структуре иРНК и приводит к изменению последовательности аминокислот в
полипептидной цепи, образующейся в результате трансляции на рибосомах.
Существуют различные типы генных мутаций, связанных с добавлением,
выпадением или перестановкой оснований в гене. Это дупликации, вставки,
делеции, инверсии или замены оснований. Во всех случаях они приводят к
изменению нуклеотидной последовательности, а часто – и к образованию
измененного полипептида. Например, делеция вызывает сдвиг рамки.
Генные мутации, возникающие в гаметах или в будущих половых клетках,
передаются всем клеткам потомков и могут влиять на дальнейшую судьбу
популяции. Соматические генные мутации, происходящие в организме,
наследуются только теми клетками, которые образуются из мутантной клетки
путем митоза. Они могут оказать воздействие на тот организм, в котором они
возникли, но со смертью особи исчезают из генофонда популяции. Соматические
мутации, вероятно, возникают очень часто и остаются незамеченными, но в
некоторых случаях при этом образуются клетки с повышенной скоростью роста и
деления. Эти клетки могут дать начало опухолям – либо доброкачественным,
которые не оказывают особого влияния на весь организм, либо
злокачественным, что приводит к раковым заболеваниям.
Эффекты генных мутаций чрезвычайно разнообразны. Большая часть мелких
генных мутаций фенотипически не проявляется, поскольку они рецессивны,
однако известен ряд случаев, когда изменение всего лишь одного основания в
определенном гене оказывает глубокое влияние на фенотип. Одним из примеров
служит серповидноклеточная анемия – заболевание, вызываемое у человека
заменой основания в одном из генов, ответственных за синтез гемоглобина.
Молекула дыхательного пигмента гемоглобина у взрослого человека состоит из
четырех полипептидных цепей (двух (- и двух (– цепей), к которым
присоединены четыре простетические группы гема. От структуры полипептидных
цепей зависит способность молекулы гемоглобина переносить кислород.
Изменение последовательности оснований в триплете, кодирующем одну
определенную аминокислоту из 146, входящих в состав (- цепей, приводит к
синтезу аномального гемоглобина серповидных клеток (HbS).
Последовательности аминокислот в нормальных и аномальных ( -цепях
различаются тем, что в одной точке аномальных цепей гемоглобина S
глутамидовая кислота замещена валином.В результате такого, казалось бы,
незначительного изменения гемоглобин S кристаллизуется при низких
концентрациях кислорода, а это в свою очередь приводит к тому, что в
венозной крови эритроциты с таким гемоглобином деформируются (из округлых
становятся серповидными) и быстро разрушаются. Физиологический эффект
мутации состоит в развитии острой анемии и снижении количества кислорода,
переносимого кровью. Анемия не только вызывает физическую слабость, но и
может привести к нарушениям деятельности сердца и почек и к ранней смерти
людей, гомозиготных по мутантному аллелю. В гетерозиготном состоянии этот
аллель вызывает значительно меньший эффект: эритроциты выглядят
нормальными, а аномальный гемоглобин составляет только около 40 %. У
гетерозигот развивается анемия лишь в слабой форме, а зато в тех областях,
где широко распространена малярия, особенно в Африке и Азии, носители
аллеля серповидноклеточности невосприимчивы к этой болезни. Это
объясняется тем, что ее возбудитель - малярийный плазмодий - не может жить
в эритроцитах, содержащих аномальный гемоглобин.
2.15. Летальные мутацииИзвестны случаи, когда один ген может оказывать
влияние на несколько признаков, в том числе и на жизнеспособность.
Летальные мутации вызывают такие изменения в развитии, которые несовместимы
с жизнедеятельностью. Доминантные летальные гены трудны для изучения, и
сведения о них ограничены. Напротив, гены с рецессивным летальным действием
изучены гораздо лучше. Известно множество рецессивных мутаций у различных
организмов, которые никак себя не проявляют фенотипически. Существует также
очень много доминантных мутаций, имеющих в гетерозиготном состоянии четко
отличающийся фенотип, которые в гомозиготном состоянии вызывают летальный
эффект. Фаза летального действия, т.е. время, когда мутантный ген
реализуется, существенно варьирует: от самых первых этапов эмбрионального
развития до периода полового созревания. В некоторых случаях летальные гены
могут иметь более одной фазы летального действия. Это означает, что ген или
его продукты могут иметь несколько раз активно работать и использоваться в
ходе онтогенеза. Летальный эффект одних мутантных генов проявляется всегда,
другие показывают существенную зависимость от условий среды. У человека и
у других млекопитающих определенный рецессивный ген вызывает образование
внутренних спаек легких, что приводит к смерти при рождении. Другим
примером служит ген, который влияет на формирование хряща и вызывает
врожденные уродства, ведущие к смерти новорожденного.
Воздействие летального гена ясно видно на примере наследования окраски
шерсти у мышей. У диких мышей шерсть обычно серая, типа агути; но у
некоторых мышей шерсть желтая. При скрещивании между желтыми мышами в
потомстве получаются как желтые мыши, так и агути в отношении 2:1.
Единственное возможное объяснение таких результатов состоит в том, что
желтая окраска шерсти доминирует над агути, и что все желтые мыши
гетерозиготны. Атипичное менделевское отношение объясняется гибелью
гомозиготных желтых мышей до рождения. При вскрытии беременных желтых
мышей, скрещенных с желтыми же мышами, в их матках были обнаружены мертвые
желтые мышата. Если же скрещивались желтые мыши и агути, то в матках
беременных самок не оказывалось желтых мышат, поскольку при таком
скрещивании не может быть потомства, гомозиготного по гену желтой шерсти.
Мутации, характеризующиеся в гомозиготном состоянии летальным эффектом,
далеко не всегда фенотипически проявляются у гетерозигот. К их числу
относится комплекс рецессивных t- мутаций у мышей, локализованных в
аутосоме. Одной из самых ранних мутаций у млекопитающих, является мутация
t12, вызывающая гибель гомозигот уже на стадии морулы (~20-30 клеток).
Гетерозиготные животные [pic] имеют нормальный фенотип и жизнеспособность.
Летальные мутации обнаруживаются не только у животных. Наглядный пример,
иллюстрирующий летальное действие генов у растений, - явление хлорофильных
мутаций. У гомозиготных по хлорофильной мутации растений нарушен синтез
молекулы хлорофилла. Такие растения развиваются до тех пор, пока запасы
питательных веществ в семени не иссякают, поскольку они не способны к
фотосинтезу.
2.16. Значение мутаций
Хромосомные и генные мутации оказывают разнообразные воздействия на
организм. Во многих случаях эти мутации летальны, так как нарушают
развитие; у человека, например, около 20 % беременностей заканчиваются
естественным выкидышем в сроки до 12 недель, и в половине таких случаев
можно обнаружить хромосомные аномалии. В результате некоторых хромосомных
мутаций определенные гены могут оказаться вместе, и их общий эффект может
привести к появлению какого-либо «благоприятного» признака. Кроме того,
сближение некоторых генов друг с другом делает менее вероятным их
разделение в результате кроссинговера, а в случае благоприятных генов это
создает преимущество.
Генная мутация может привести к тому. Что в определенном локусе окажется
несколько аллелей. Это увеличивает как гетерозиготность данной популяции,
так и ее генофонд, и ведет к усилению внутрипопуляционной изменчивости.
Перетасовка генов как результат кроссинговера, независимого распределения,
случайного оплодотворения и мутаций может повысить непрерывную
изменчивость, но ее эволюционная роль часто оказывается преходящей, так как
возникающие при этом изменения могут быстро сгладиться вследствие
«усреднения». Что же касается генных мутаций, то некоторые из них
увеличивают дискретную изменчивость, и это может оказать на популяцию более
глубокое влияние. Большинство генных мутаций рецессивны по отношению к
«нормальному» аллелю, который, успешно выдержав отбор на протяжении многих
поколений, достиг генетического равновесия с остальным генотипом. Будучи
рецессивными, мутантные аллели могут оставаться в популяции в течение
многих поколений, пока им не удастся встретиться, т.е. оказаться в
гомозиготном состоянии и проявиться в фенотипе. Время от времени могут
возникать и доминантные мутантные аллели, которые немедленно дают
фенотипический эффект.
Глава 3. Современные возможности и задачи генетики и генной инженерии
3.1. Химеры
Широкие возможности глубже понять роль генов в дифференцировке клеток и в
регуляции взаимодействий между клетками в процессе развития дают химерные
и трансгенные животные. Развитие экспериментальных методов в последнее
время сделало возможным получать совершенно необычных животных, которые
несут гены не только одного отца и одной матери, но и большего количества
предков.
Химерные животные – это генетические мозаики, образующиеся в результате
объединения бластомеров от эмбрионов с разными генотипами. Получение таких
эмбрионов осуществляется во многих лабораториях. Принцип получения химер
сводится главным образом к выделению двух или большего числа ранних
зародышей и их слиянию. В том случае, когда в генотипе зародышей,
использованных для создания химеры есть отличия по ряду характеристик,
удается проследить судьбу клеток обоих видов. С помощью химерных мышей был,
например, решен вопрос о способе возникновения в ходе развития многоядерных
клеток попречнополосатых мышц. Изучение химерных животных позволило решить
немало трудных вопросов, и в будущем благодаря применению этого метода
появится возможность решать сложные вопросы генетики и эмбриологии.
3.2. Трансгенные организмы
Развитие генной инженерии создало принципиально новую основу для
конструирования последовательностей ДНК, нужную исследователям. Успехи в
области экспериментальной биологии позволили создать методы введения таких
искусственно созданных генов в ядра яйцеклеток или сперматозоидов. В
результате возникла возможность получения трансгенных животных, т.е.
животных, несущих в своем организме чужеродные гены.
Одним из первых примеров успешного создания трансгенных животных было
получение мышей, в геном которых был встроен гормон гена роста крысы.
Некоторые из таких трансгенных мышей росли быстро и достигали размеров,
существенно превышавших контрольных животных.
Первая в мире обезьяна с измененным генетическим кодом появилась на свет в
Америке. Самец по кличке Энди родился после того, как в яйцеклетку его
матери был внедрен ген медузы. Опыт проводился с макакой-резусом, которая
гораздо ближе по своим биологическим признакам к человеку, чем любые другие
животные, до сих пор подвергавшиеся экспериментам по генетической
модификации. Ученые говорят, что применение этого метода поможет им при
разработке новых способов лечения таких болезней, как рак груди и диабет.
Однако, как сообщает ВВС, этот эксперимент уже вызвал критику со стороны
организаций по защите животных, которые опасаются, что эти исследования
приведут к страданиям множества приматов в лабораториях.
Создание гибрида человека и свиньи. Из человеческой клетки извлекается
ядро и имплантируется в ядро яйцеклетки свиньи, которую предварительно
освободили от генетического материала животного. В результате получился
эмбрион, который прожил 32 дня, пока ученые не решили его уничтожить.
Исследования проводятся как всегда ради благородной цели: поиска лекарств
от заболеваний человека. Несмотря на то, что попытки клонировать
Информация о работе Основные проблемы генетики и механизм воспроизводства жизни