Автор работы: Пользователь скрыл имя, 14 Июня 2013 в 18:45, курсовая работа
Теория массового обслуживания — область прикладной математики, занимающаяся анализом процессов в системах производства, обслуживания, управления, в которых однородные события повторяются многократно, например, на предприятиях бытового обслуживания; в системах приема, переработки и передачи информации; автоматических линиях производства и др.
Предметом теории массового обслуживания является установление зависимостей между характером потока заявок, числом каналов обслуживания, производительностью отдельного канала и эффективным обслуживанием с целью нахождения наилучших путей управления этими процессами. Задачи теории массового обслуживания носят оптимизационный характер и в конечном итоге включают экономический аспект по определению такого, варианта системы, при котором будет обеспечен минимум суммарных затрат от ожидания обслуживания, потерь времени и ресурсов на обслуживание и от простоев каналов обслуживания.
Введение…………………………………………………………………………...2
1. Системы массового обслуживания…………………………………….…….3
1.1 Многоканальная СМО с отказами в обслуживании……………………8
1.2 Многоканальная СМО с ограниченной длиной очереди……………..11
1.3 Многоканальная СМО с неограниченной очередью………………….15
2. Анализ системы массового обслуживания супермаркета………………..19
Заключение………………………………………………………………………
А=λ*Робс
Вероятность обслуживания, или доля обслуженных заявок, определяет относительную пропускную способность СМО, которая может быть определена и по другой формуле:
Из этого выражения можно определить среднее число заявок, находящихся под обслуживанием, или, что же самое, среднее число занятых обслуживанием каналов
Коэффициент занятости каналов
обслуживанием определятся
Вероятность занятости каналов обслуживанием, которая учитывает среднее время занятости tзан и простоя tпр каналов, определяется следующим образом:
Из этого выражения можно определить среднее время простоя каналов
Среднее время пребывания заявки в системе в установившемся режиме определятся формулой Литтла
Тсмо= nз/λ.
1.2 Многоканальная СМО с ограниченной длиной очереди
Рассмотрим многоканальную СМО , на вход которой поступает пуассоновский поток заявок с интенсивностью , а интенсивность обслуживания каждого канала составляет , максимально возможное число мест в очереди ограничено величиной m. Дискретные состояния СМО определяются количеством заявок, поступивших в систему, которые можно записать.
- все каналы свободны, ;
- занят только один канал (
- заняты только два канала (любых), ;
- заняты все каналов, .
Пока СМО находится в любом из этих состояний, очереди нет. После того как заняты все каналы обслуживания, последующие заявки образуют очередь, тем самым, определяя дальнейшие состояние системы:
- заняты все каналов и одна заявка стоит в очереди,
;
- заняты все каналов и две заявки стоят в очереди,
;
- заняты все каналов и все мест в очереди,
.
Граф состояний n-канальной СМО с очередью, ограниченной m местами на рис. 2.
Рис. 2. Граф состояний n-канальной СМО с ограничением на длину очереди m
Переход СМО в состояние с большими номерами определяется потоком поступающих заявок с интенсивностью , тогда как по условию в обслуживании этих заявок принимают участие одинаковых каналов с интенсивностью потока обслуживания равного для каждого канала. При этом полная интенсивность потока обслуживания возрастает с подключением новых каналов вплоть до такого состояния , когда все n каналов окажутся занятыми. С появлением очереди интенсивность обслуживания более увеличивается, так как она уже достигла максимального значения, равного .
Запишем выражения для предельных вероятностей состояний:
.
Выражение для можно преобразовать, используя формулу геометрической прогрессии для суммы членов со знаменателем :
Образование очереди возможно, когда вновь поступившая заявка застанет в системе не менее требований, т.е. когда в системе будет находиться требований. Эти события независимы, поэтому вероятность того, что все каналы заняты, равна сумме соответствующих вероятностей Поэтому вероятность образования очереди равна:
Вероятность отказа в обслуживании наступает тогда, когда все каналов и все мест в очереди заняты:
Относительная пропускная способность будет равна:
Абсолютная пропускная способность –
Среднее число занятых каналов –
Среднее число простаивающих каналов –
Коэффициент занятости (использования) каналов –
Коэффициент простоя каналов –
Среднее число заявок, находящихся в очередях –
В случае если , эта формула принимает другой вид –
Среднее время ожидания в очереди определяется формулами Литтла –
Среднее время пребывания заявки в СМО, как и для одноканальной СМО, больше среднего времени ожидания в очереди на среднее время обслуживания, равное , поскольку заявка всегда обслуживается только одним каналом:
1.3 Многоканальная СМО с неограниченной очередью
Рассмотрим многоканальную
СМО с ожиданием и
S - все каналы свободны, k=0;
S - занят один канал, остальные свободны, k=1;
S - заняты два канала, остальные свободны, k=2;
S - заняты все n каналов, k=n, очереди нет;
S - заняты все n каналов, одна заявка в очереди, k=n+1,
S - заняты все n каналов, r заявок в очереди, k=n+r,
Вероятности состояний получим из формул для многоканальной СМО с ограниченной очередью при переходе к пределу при m . Следует заметить, что сумма геометрической прогрессии в выражении для p расходится при уровне загрузки p/n>1, очередь будет бесконечно возрастать, а при p/n<1 ряд сходится, что определяет установившийся стационарный режим работы СМО.
Очереди нет
|
|
|
|
|
|
… |
|
|
|
… |
|
|
Рис.3. Размеченный граф состояний многоканальной СМО с неограниченной очередью
Для которого и определим выражения для предельных вероятностей состояний:
…;
Поскольку отказа в обслуживании в таких системах не может быть, то характеристики пропускной способности равны:
среднее число заявок в очереди –
среднее время ожидания в очереди –
среднее число заявок в СМО –
Вероятность того, что СМО находится в состоянии , когда нет заявок и не занято ни одного канала, определяется выражением
Эта вероятность определяет среднюю долю времени простоя канала обслуживания. Вероятность занятости обслуживанием k заявок –
На этом основании можно определить вероятность, или долю времени занятости всех каналов обслуживанием
Если же все каналы уже заняты обслуживанием, то вероятность состояния определяется выражением
Вероятность оказаться в
очереди равна вероятности
Среднее число заявок, находящихся
в очереди и ожидающих
Среднее время ожидания заявки в очереди по формуле Литтла: и в системе
среднее число занятых каналов обслуживанием:
;
среднее число свободных каналов:
;
коэффициент занятости каналов обслуживанием:
Важно заметить, что параметр
характеризует степень
2. Анализ системы массового обслуживания супермаркета
Одной из важных задач коммерческой
деятельности является рациональная организация
торгово-технологического процесса массового
обслуживания, например в универсаме.
В частности, определение мощности
кассового узла торгового предприятия
является непростой задачей. Такие
экономико-организационные
|
СМО |
|
СМО |
|
- интенсивность входного потока покупателей;
- интенсивность прихода
- интенсивность прихода
- интенсивность потока
Рис.4. Модель двухфазной СМО торгового зала универсама
Основная функция расчетного узла состоит в обеспечении высокой пропускной способности покупателей в торговом зале и создании комфортного обслуживания покупателей. Факторы, влияющие на пропускную способность расчетного узла, можно разделить на две группы:
1) экономико-организационные факторы: система материальной ответственности в универсаме; средняя стоимость и структура одной покупки;
2) организационная структура кассового узла;
3) технико-технологические
факторы: применяемые типы
Из перечисленных групп факторов наибольшее влияние оказывают организационное построение кассового узла и соответствие мощности кассового узла интенсивности покупательских потоков.
Рассмотрим обе фазы системы обслуживания:
2) обслуживание покупателей
в зоне расчетного узла. Входящий
поток покупателей попадает в
фазу самообслуживания, и покупатель
самостоятельно отбирает
Выходящий поток покупателей из зоны самообслуживания одновременно является входящим потоком в зону кассового узла, который последовательно включает ожидание покупателя в очереди и затем обслуживание его контролером-кассиром. Кассовый узел можно рассматривать как систему обслуживания с потерями или как систему обслуживания с ожиданием.
Однако ни первая, ни вторая
рассмотренные системы не позволяют
реально описать процесс
в первом варианте кассовый узел, мощность которого будет рассчитана на систему с потерями, требует значительных как капитальных вложений, так и текущих затрат на содержание контролеров-кассиров;
во втором варианте кассовый
узел, мощность которого будет рассчитана
на систему с ожиданиями, приводит
к большим затратам времени покупателей
в ожидании обслуживания. При этом
в часы пик зона расчетного узла
«переполняется» и очередь
В связи с этим целесообразно рассматривать вторую фазу обслуживания как систему с ограниченной очереди, промежуточную между системой с ожиданием и системой с потерями. При этом предполагается, что одновременно в системе могут находиться не более L, причем L=n+m, где n-количество обслуживаемых клиентов в кассах, m-количество покупателей, стоящих в очереди, причем любая m+1- заявка покидает систему необслуженной.
Это условие позволяет, с одной стороны, ограничить площадь зоны расчетного узла с учетом максимально допустимой длины очереди, а с другой – ввести ограничение на время ожидания покупателями обслуживания в кассовом узле, т.е. учитывать издержки потребления покупателей.
Правомерность постановки задачи в таком виде подтверждается проведенными обследованиями потоков покупателей в универсамах, результаты которых приведены в табл. 4.1, анализ которых выявил тесную связь между средней длинной очереди в кассовом узле и количеством покупателей, не совершивших покупок.