Автор работы: Пользователь скрыл имя, 14 Декабря 2012 в 20:49, курсовая работа
Экспертная система состоит из базы знаний (части системы, в которой содержатся факты), подсистемы вывода (множества правил, по которым осуществляется решение задачи), подсистемы объяснения, подсистемы приобретения знаний и диалогового процессора.
При построении подсистем вывода используют методы решения задач искусственного интеллекта.
Глава 1. Экспертные системы, их особенности. Применение экспертных систем. История развития.
1.1. Определение экспертных систем. Главное достоинство и назначение экспертных систем.
1.2. Отличие экспертных систем от других программных продуктов.
1.3. Отличительные особенности. Экспертные системы первого и второго поколения.
1.4. Области применения:
а) Медицинская диагностика.
б) Прогнозирование.
в) Планирование.
г) Интерпретация.
д) Контроль и управление.
е) Диагностика неисправностей в механических и электрических
устройствах.
ж) Обучение.
1.5. Критерии использования экспертных систем для решения задач.
1.6. Ограничения в применении экспертных систем.
1.7. Преимущества экспертных систем перед человеком-экспертом.
1.8. История развития экспертных систем.
1.8.1. Основные линии развития экспертных систем.
1.8.2. Проблемы, возникающие при создании экспертных систем.
Перспективы развития.
Глава 2. Структура систем, основанных на знаниях.
2.1. Категории пользователей экспертных систем.
2.2. Подсистема приобретения знаний.
2.3. База знаний.
2.4. Подсистема вывода. Способы логического вывода.
2.5. Диалог с экспертной системой. Объяснение.
Глава 3. Стратегии управления выводом.
3.1. Разработка стратегии управления выводом.
3.2. Повышение эффективности поиска.
а) Сопоставление методов поиска в глубину и в ширину.
б) Альфа-бета алгоритм.
в) Разбиение на подзадачи.
г) Использование формальной логики при решении задач.
3.3. Представление задач в пространстве состояний.
3.3.1. Описание состояний.
3.3.2. Состояния и операторы.
3.3.3. Запись в виде графа.
Список литературы.
3. PROSPECTOR-KAS. PROSPECTOR- предназначена
для поиска (предсказания) месторождений
на основе геологических
4. CASNET-EXPERT. Система
CASNET- медицинская ЭС для
На ее основе разработан язык инженерии знаний EXPERT, с помощью которой создан ряд других медицинских диагностических систем.
5. HEARSAY-HEARSAY-2-HEARSAY-3-
6. Системы AM (Artifical Mathematician-
искусственный математик) и
В систему
AM первоначально было заложено
около 100 правил вывода и более
200 эвристических алгоритмов
При разработке системы EURISCO была предпринята попытка преодолеть указанные недостатки системы AM. Как и в начале эксплуатации AM, первые результаты, полученные с помощью EURISCO, были эффективными. Сообщалось, что система EURISCO может успешно участвовать в очень сложных играх. С ее помощью в военно-стратегической игре, проводимой ВМФ США, была разработана стратегия, содержащая ряд оригинальных тактических ходов. Согласно одному из них, например предлагалось взрывать свои корабли, получившие повреждения. При этом корабли, оставшиеся неповрежденными, получает необходимое пространство для выполнения маневра.
Однако через
некоторое время обнаружилось, что
система не всегда корректно
переопределяет первоначально
С 1990 года доктор Ленат во главе исследовательской группы занят кодированием и вводом нескольких сот тысяч элементов знаний, необходимых, по его мнению, для создания “интеллектуальной” системы. Этот проект назван Cyc (“Цик”, от английского слова enciklopaedia).
1.8.2. Проблемы, возникающие при создании ЭС. Перспективы разработки.
С 70-х годов
ЭС стали ведущим направлением
в области искусственного
Каталог ЭС и инструментальных программных средств для их разработки, опубликованный в США в 1987 году, содержит более 1000 систем (сейчас их уже значительно больше). В развитых зарубежных странах сотни фирм занимаются их разработкой и внедрением. Имеются и отечественные разработки ЭС, в том числе нашедший промышленное применение.
Однако уже
на начальных этапах выявились
серьезные принципиальные
Первая трудность
возникает в связи с
Вторая и
основная трудность - проблема
приобретения (усвоения) знаний. Эта
проблема возникает при “
Таким
образом, выясняется, что для разработки
ЭС необходимо участие в ней
особого рода специалистов, обладающих
указанной совокупностью
Третья серьёзная трудность в очень большой трудоёмкости создания ЭС: требуется разработать средства управления базой знаний, логического вывода, диалогового взаимодействия с пользователем и т.д. .Объем программирования столь велик, а программы столь сложны и нетрадиционны, что имеет смысл, как это принято сейчас при разработке больших программ, на первом этапе создать демонстрационный прототип системы – предварительный вариант, в котором в упрощенном виде реализованы лишь её основные планируемые возможности и которая будет служить для заказчика подтверждением того, что разработка ЭС для решения данной задачи принципиально возможна, а для разработчиков – основой для последующего улучшения и развития системы.
Когда стала очевидной полная непригодность этих систем и созданного для них специализированного аппаратного оборудования, многие обозреватели пришли к выводу, что существующая технология создания ЭС была тупиковым направлением в развитии информационных технологий. В последнее десятилетие ЭС возродилось в виде систем с базой знаний, которые тесно переплетались с существующими деловыми системами. Их используют в здравоохранении, страховании, банковском деле и других областях, чтобы с помощью правил и объектов накапливать опыт, повысить качество принимаемых решений. Базы знаний встроены сегодня в наиболее современные крупные системы. Они находятся в самой сердцевине программ- агентов, осуществляющих поиск в сети Internet, и помогают коллективам пользователей справится с поиском информации.
Рассмотрим факторы, стимулировавшие развитие систем с базами знаний:
Объединение всех видов
программных продуктов и их отдельных
компонентов в единую ЭС признано
экономически выгодным, так как применение
ЭС позволяет существенно
Объектная технология, на основе которой
могут создаваться и
Чтобы стать экспертом,
Как работают эксперты? Следуя принципам, заложенным в объектно-ориентированные технологии, они подразумевают проблемы на объекты или классы объектов. По мере накопления знаний в определённой области они делают обобщения, ориентируясь на выделенные объекты или классы объектов. Некоторые обобщения имеют иерархическую структуру, где свойства высших объектов наследуются объектами низшего уровня. Сущность может соответствовать нескольким классам объектов и взаимодействовать с различными объектами или классами. По мере того как знания эксперта углубляются, на их основе формируются новые ассоциации, а отдельные уровни иерархии пропадают или расширяются.
Методика объектно-
При разработке систем автоматизированного проектирования (САПР) уже нельзя обойтись без ЭС; их использование признано экономически выгодным.
С середины 80-х годов наиболее популярные системы с базами знаний создавались с ориентацией на стандартное оборудование. В этом ключ к пониманию причин успеха современной технологии баз знаний. Опыт показывает, что системы с базами знаний необходимо встраивать в самые важные бизнес процессы и организовать работу персонала так, чтобы он мог максимально использовать их преимущества для достижения наилучших результатов.
Глава 2. Структура систем, основанных на знаниях.
2.1. Критерий пользователя ЭС
Структура ЭС изображена на схеме:
Экспертные
системы имеют две категории
пользователей и два