Автор работы: Пользователь скрыл имя, 26 Апреля 2013 в 09:13, курсовая работа
При создании ЭС возникает ряд затруднений. Это прежде всего связано с тем, что заказчик не всегда может точно сформулировать свои требования к разрабатываемой системе. Также возможно возникновение трудностей чисто психологического порядка: при создании базы знаний системы эксперт может препятствовать передаче своих знаний, опасаясь, что впоследствии его заменят “машиной”. Но эти страхи не обоснованы, т. к. ЭС не способны обучаться, они не обладают здравым смыслом, интуицией. Но в настоящее время ведутся разработки экспертных систем, реализующих идею самообучения. Также ЭС неприменимы в больших предметных областях и в тех областях, где отсутствуют эксперты.
д) Контроль и управление.
Системы, основанные на знаниях, могут применятся в качестве интеллектуальных систем контроля и принимать решения, анализируя данные, поступающие от нескольких источников. Такие системы уже работают на атомных электростанциях, управляют воздушным движением и осуществляют медицинский контроль. Они могут быть также полезны при регулировании финансовой деятельности предприятия и оказывать помощь при выработке решений в критических ситуациях.
е) Диагностика неисправностей в механических и электрических устройствах.
В этой сфере системы, основанные на знаниях, незаменимы как при ремонте механических и электрических машин (автомобилей, дизельных локомотивов и т.д.), так и при устранении неисправностей и ошибок в аппаратном и программном обеспечении компьютеров.
ж) Обучение.
Системы, основанные на знаниях, могут входить составной частью в компьютерные системы обучения. Система получает информацию о деятельности некоторого объекта (например, студента) и анализирует его поведение. База знаний изменяется в соответствии с поведением объекта. Примером этого обучения может служить компьютерная игра, сложность которой увеличивается по мере возрастания степени квалификации играющего. Одной из наиболее интересных обучающих ЭС является разработанная Д.Ленатом система EURISCO, которая использует простые эвристики. Эта система была опробована в игре Т.Тревевеллера, имитирующая боевые действия. Суть игры состоит в том, чтобы определить состав флотилии, способной нанести поражение в условиях неизменяемого множества правил. Система EURISCO включила в состав флотилии небольшие, способные провести быструю атаку корабли и одно очень маленькое скоростное судно и постоянно выигрывала в течение трех лет, несмотря на то, что в стремлении воспрепятствовать этому правила игры меняли каждый год.
Большинство
ЭС включают знания, по содержанию
которых их можно отнести
1.4. Критерий использования ЭС для решения задач.
Существует ряд
прикладных задач, которые
1. Данные и знания надежны и не меняются со временем.
2. Пространство возможных решений относительно невелико.
3. В процессе решения
задачи должны использоваться
формальные рассуждения.
4. Должен быть по
крайней мере один эксперт,
который способен явно сформули
В таблице 1 (см. Приложение 1) один приведены сравнительные свойства прикладных задач, по наличию которых можно судить о целесообразности использования для их решения ЭС.
В целом ЭС не рекомендуется применять для решения следующих типов задач:
- математических, решаемых
обычным путем формальных
- задач распознавания, поскольку в общем случае они решаются численными методами;
- задач, знания о
методах решения которых
1.5. История развития, проблемы и перспективы.
Наиболее известные ЭС, разработанные в 60-70-х годах, стали в своих областях уже классическими. По происхождению, предметным областям и по преемственности применяемых идей, методов и инструментальных программных средств их можно разделить на несколько семейств6.
1. META-DENDRAL.Система DENDRAL позволяет определить наиболее вероятную структуру химического соединения по экспериментальным данным (масс-спектрографии, данным ядерном магнитного резонанса и др.).M-D автоматизирует процесс приобретения знаний для DENDRAL. Она генерирует правила построения фрагментов химических структур.
2. MYCIN-EMYCIN-TEIREIAS-PUFF-
3. PROSPECTOR-KAS. PROSPECTOR - предназначена для поиска (предсказания) месторождений на основе геологических анализов. KAS- система приобретения знаний для PROSPECTOR.
4. CASNET-EXPERT. Система CASNET- медицинская ЭС для диагностики выдачи рекомендаций по лечению глазных заболеваний. На ее основе разработан язык инженерии знаний EXPERT, с помощью которой создан ряд других медицинских диагностических систем.
5. HEARSAY-HEARSAY-2-HEARSAY-3-
6. Системы AM (Artifical Mathematician- искусственный математик) и EURISCO были разработаны в Станфордском университете доктором Д. Ленатом для исследовательских и учебных целей. Ленат считает, что эффективность любой ЭС определяется закладываемыми в нее знаниями. По его мнению, чтобы система была способна к обучению, в нее должно быть введено около миллиона сведений общего характера. Это примерно соответствует объему информации, каким располагает четырехлетний ребенок со средними способностями. Ленат также считает, что путь создания узкоспециализированных ЭС с уменьшенным объемом знаний ведет к тупику.
В систему AM первоначально было заложено около 100 правил вывода и более 200 эвристических алгоритмов обучения, позволяющих строить произвольные математические теории и представления. Сначала результаты работы системы были весьма многообещающими. Она могла сформулировать понятия натурального ряда и простых чисел. Кроме того, она синтезировала вариант гипотезы Гольдбаха о том, что каждое четное число, большее двух, можно представить в виде суммы двух простых чисел. До сих пор не удалось ни найти доказательства данной гипотезы, ни опровергнуть ее. Дальнейшее развитие системы замедлилось и было отмечено, что несмотря на проявленные на первых порах “математические способности”, система не может синтезировать новых эвристических правил, т.е. ее возможности определяются только теми эвристиками, что были в нее изначально заложены.
При разработке системы
EURISCO была предпринята попытка
преодолеть указанные
Однако через некоторое
время обнаружилось, что система
не всегда корректно
С 1990 года доктор Ленат
во главе исследовательской
С 70-х годов ЭС стали ведущим направлением в области искусственного интеллекта. При их разработке нашли применение методы ИИ, разработанные ранее: методы представления знаний, логического вывода, эвристического поиска, распознавания предложений на естественном языке и др. Можно утверждать, что именно ЭС позволили получить очень большой коммерческий эффект от применения таких мощных методов. В этом - их особая роль.
Каталог ЭС и инструментальных программных средств для их разработки, опубликованный в США в 1987 году, содержит более 1000 систем (сейчас их уже значительно больше). В развитых зарубежных странах сотни фирм занимаются их разработкой и внедрением. Имеются и отечественные разработки ЭС, в том числе - нашедший промышленное применение.
Однако уже на начальных
этапах выявились серьезные
Первая трудность возникает
в связи с постановкой задач.
Большинство заказчиков, планируя
разработку ЭС, в следствие недостаточной
компетентности в вопросах
Вторая и основная трудность - проблема приобретения (усвоения) знаний. Эта проблема возникает при “передаче” знаний, которыми обладают эксперты-люди, ЭС. Разумеется для того, чтобы “обучить” им компьютерную систему, прежде всего требуется сформулировать, систематизировать и формализовать эти знания “на бумаге”. Это может пока
заться парадоксальным, но большинство экспертов (за исключением, может быть, математиков), успешно используя в повседневной деятельности свои обширные знания, испытывают большие затруднения при попытке сформулировать и представить в системном виде хотя бы основную часть этих знаний: иерархию используемых понятий, эвристики, алгоритмы, связи между ними. Оказывается, что для подобной формализации знаний необходим определенный систематический стиль мышления, более близкий математикам и программистам, чем, например, юристам и медикам. Кроме того, необходимы, с одной стороны, знания в области математической логики и методов представления знаний, с другой - знания возможности ЭВМ, из программного обеспечения, в частности, языков и систем программирования.7
Таким
образом, выясняется, что для разработки
ЭС необходимо участие в ней
особого рода специалистов, обладающих
указанной совокупностью
Íà
ýòàïå ïðèîáðåòåíèÿ çíàíèé