Автор работы: Пользователь скрыл имя, 21 Января 2014 в 07:14, лекция
Основными стадиями технологического процесса производства кулинарной продукции являются прием и хранение сырья, производство полуфабрикатов, производство готовой кулинарной продукции и её реализация. В общественном питании функционируют предприятия, на которых технологический процесс осуществляется полностью, а также предприятия, где процесс ограничен несколькими стадиями. Например, на одних предприятиях хранят сырье и производят полуфабрикаты, а на других производят и реализуют готовую кулинарную продукцию. Нередко на предприятиях одновременно используют и сырье, и полуфабрикаты, а готовую продукцию реализуют через подразделения или иные предприятия.
На температуру дымообразования, помимо вида жира, влияют содержание в нем свободных жирных кислот, отношение нагреваемой поверхности жира к его объему и материал посуды, в которой производится нагрев. Присутствие в жире даже небольших количеств свободных жирных кислот заметно снижает температуру дымообразования. Так, при повышении содержания свободных жирных кислот в свином жире (от 0,02 до 0,81)% температура его дымообразования снижается (с 221 до 150)0С. При нагревании одного и того же количества жира одного вида на двух сковородах диаметром (15 и 20) см температура дымообразования оказалась соответственно (185 и 169)0С.
Некоторые металлы переменной валентности (железо, медь и др.) способны катализировать пиролиз жира, снижая таким образом температуру дымообразования.
На крупных
пищевых предприятиях
При непрерывной
жарке качество фритюрного
где П — количество жира, поглощаемого и адсорбируемого обжариваемым продуктом за 24 ч, кг;
М — средняя масса жира в жарочном аппарате, кг.
Чем выше коэффициент сменяемости жира, тем меньше он подвергается окислительным изменениям. В результате постоянной сменяемости нагреваемого жира степень окисления его быстро достигает стабильного состояния и в дальнейшем мало изменяется.
Наиболее глубокие изменения происходят в жире при периодической фритюрной жарке. При таком способе жарки жир может длительно нагреваться без продукта (холостой нагрев) и периодически использоваться для жарки различных продуктов при сравнительно низком коэффициенте сменяемости. Причем циклы охлаждения и нагревания многократно повторяются. Вероятность окисления жиров при таком циклическом нагреве даже выше, чем при непрерывном.
Полуфабрикаты |
Температура, 0С |
Продолжи-тельность жарки, мин. |
Котлеты по-киевски Рыба в тесте Порционные куски рыбы Картофель (брусочки) Картофель (соломка) Мясо, птица, кролик отварные Пирожки, пончики, чебуреки |
160-170 160-170 160-170 175-180 175-180 170-180 180-190 |
3-4 2-3 3-5 5-6 3-4 3-4 4-6 |
3.4.1
Физико-химические изменения
При термическом окислении жиров в процессе фритюрной жарки
происходит быстрое
образование и распад
НООС ¾ R1 ¾ СН ¾ СН ¾ R2 → НООС ¾ R1 ¾ С + R2 ¾ С →
│ │
О ¾ О
+2О
→ НООС ¾ R1 ¾ СООН + R2 ¾ СООН
Циклические перекиси могут превращаться и в другие более стабильные продукты вторичного окисления:
R1 ¾ СН ¾ СН ¾ R2 → R1 ¾ СН ¾ СН ¾ R2 →
│ │
О ¾ О О
циклическая перекись
+Н2О
→ R1 ¾ СН ¾ СН ¾ R2 → R1 ¾ С ¾ С ¾ R2
│ │ -Н2О │ │
ОН ОН О О
диоксикислота
Вода, попадающая в жир из обжариваемого продукта, не только испаряется, унося с собой летучие продукты распада, но и способствуют гидролизу жира. В результате накопления свободных жирных кислот кислотное число жира непрерывно увеличивается, причем не только вследствие гидролиза, но и за счет образования низкомолекулярных кислот при расщеплении перекисей.
В то время как кислотное число фритюра по мере нагревания непрерывно возрастает, температура дымообразования почти линейно снижается. Это приводит к усилению выделения дыма по мере увеличения продолжительности нагревания. Вследствие увеличения содержания соединений с сопряженными двойными связями, образующимися при изомеризации, возрастает оптическая плотность жира при длине волны (232 – 234) нм.
Йодное число уменьшается как вследствие окислительных реакций по месту двойных связей, так и за счет накопления высокомолекулярных веществ, поскольку оксикислоты, дикарбонильные вещества и соединения с сопряженными двойными связями способны к реакциям полимеризации и поликонденсации. О накоплении полимеров свидетельствует увеличение вязкости.
При термическом окислении наряду с циклическими полимерами образуются циклические мономеры.
Один из основных факторов, влияющих на скорость химических изменений фритюрного жира, - температура, повышение которой ускоряет гидролиз, а также гидролитические и окислительные процессы. Так при 2000С гидролиз жира протекает в 2,5 раза быстрее, чем при 1800С. при температурах свыше 2000С помимо пиролиза заметно ускоряется нежелательные процессы полимеризации.
Другим фактором является контакт жира с кислородом воздуха, без доступа которого даже длительное нагревание при (180 – 190)0С не вызывает заметных окислительных изменений жира. Увеличению контакта с воздухом способствуют нагревание жира тонким слоем, жарка продуктов пористой структуры, сильное вспенивание и перемешивание жира.
Большое значение имеет присутствие в жире катализаторов или инициаторов окисления, увеличивающих скорость окислительных процессов. К ним относятся хлорофилл и металлы переменной валентности (Fе, Сu, Мn, Со и др.).
Скорость автоокисления жира можно заметно затормозить, вводя в него ничтожные количества антиоксидантов, механизм действия которых неодинаков. Некоторые естественные (каротин, изомеры токоферола) и искусственные (бутилоксианизол, бутилокситолуол, некоторые производные фенола) антиоксиданты связывают свободные радикалы, переводя их в неактивное состояние. Однако при высоких температурах жарки большинство естественных и искусственных антиоксидантов разрушается или испаряется.
Заметное влияние на скорость термического окисления жира оказывает химический состав обжариваемых продуктов, что объясняется, в частности, содержанием в некоторых из них значительного количества антиоксидантов. Так, входящие в состав продуктов белки способны проявлять антиокислительное действие, некоторые вещества, образующиеся в результате реакции меланоидинообразования, обладают редуцирующим действием и могут прерывать цепь окислительных превращений. Более заметное окисление фритюрных жиров при холостом нагреве по сравнению с окислением их при обжаривании продуктов можно объяснить антиокислительным действием других компонентов, входящих в состав обжариваемых продуктов в небольших количествах (витамин С, некоторые аминокислоты, глютатион).
Кроме того, устойчивость жира к окислению зависит от степени его ненасыщенности. Ненасыщенные жиры окисляются быстрее насыщенных. Однако условия жарки (температура, доступ воздуха и длительность нагревания) играют более существенную роль в процессе термического окисления.
В процессе жарки во фритюре изменяются вкус, цвет и запах жира
Пигменты, содержащиеся
в жире (каротиноиды, хлорофилл, госси
Причин потемнения жира несколько. Одна из них — загрязнение жира веществами пирогенетического распада, образующимися при обугливании мелких частиц обжариваемых продуктов.
Другая причина потемнения жира — реакции меланоидинообразования и карамелизации. Источником аминных групп, участвующих в первой из них, могут служить обжариваемые продукты, а при использовании для фритюра нерафинированных масел — и входящие в них фосфатиды. Поэтому цвет рафинированных масел, из которых удалены фосфатиды и другие посторонние вещества, изменяется значительно медленнее.
Следующая причина появления темной окраски — накопление темноокрашенных продуктов окисления самого жира.
Еще одна причина
потемнения жиров — это присутс
Чистые неокисленные триглицериды не имеют вкуса и запаха. Однако в процессе фритюрной жарки образуются летучие вещества (вещества с укороченной цепью), которых в гретых фритюрных жирах обнаружено свыше 220 видов. Некоторые из них придают определенный запах обжариваемым продуктам и самому жиру. Например, карбонильные производные, содержащие 4, 6, 10 или 12 атомов углерода, придают фритюру приятный запах жареного, тогда как карбонильные компоненты, содержащие 3, 5 или 7 атомов углерода, отрицательно влияют на запах фритюра.
При длительном использовании для фритюрной жарки жир приобретает темную окраску и одновременно жгуче-горький вкус. Кроме того, у него появляется едкий запах горелого. Объясняется это в основном присутствием в нем акролеина (СН = СН — СНО), содержание которого в жире возрастает по мере снижения температуры дымообразования. Горький вкус и запах горелого обусловлены в основном продуктами пирогенетического распада пищевых продуктов. Меланоидины также влияют на вкус и запах нагретого фритюрного жира.
Накопление в
жире полярных поверхностно-
При жарке пищевая ценность жира снижается вследствие уменьшения содержания в нем жирорастворимых витаминов, незаменимых жирных кислот, фосфатидов и других биологически активных веществ, а также за счет образования в них неусвояемых компонентов и токсических веществ.
Токсичность гретых жиров связана с образованием в них циклических мономеров и димеров. Эти вещества образуются из полиненасыщенных жирных кислот при температурах свыше 2000С. При правильных режимах жарки они появляются в фритюрных жирах в очень небольших количествах. Токсичность этих веществ проявляется при большом содержании их в рационе.
Продукты окисления жира, раздражая кишечник и оказывая послабляющее действие, ухудшают усвояемость не только самого жира, но и употребляемых вместе с ним продуктов. Отрицательное действие термически окисленных жиров может проявляться при их взаимодействии с другими веществами. Так, они могут вступать в реакцию с белками, ухудшая их усвояемость, а также частично или полностью инактивировать некоторые ферменты и разрушать многие витамины.
Качество фритюрных жиров необходимо периодически контролировать в процессе их использования.
Предельно допустимая норма содержания продуктов окисления и полимеризации в фритюрных жирах не должна превышать 1%.
3.5 Изменения углеводов пищевых продуктов
Углеводы составляют значительную часть рациона питания человека. Пища растительного происхождения в первую очередь содержит углеводы.
Все углеводы делятся на простые (монозы) и сложные (олигосахариды, полисахариды). Простыми углеводами называют углеводы, не способные гидролизоваться с образованием более простых соединений.
Основными представителями моносахаров (моноз) являются глюкоза и фруктоза, которые играют важную роль в пищевой технологии и являются важными компонентами продуктов питания и исходным материалом (субстратом) при брожении.
В природе широко распространены
также арабиноза, рибоза, ксилоза, главным
образом в качестве структурных
компонентов сложных
Информация о работе Технологическая схема производства продукции общественного питания