Учет фактора времени в финансовых расчетах

Автор работы: Пользователь скрыл имя, 24 Апреля 2013 в 07:08, контрольная работа

Краткое описание

Научная мысль и реалии бытия подтверждают тот факт, что время и пространство существуют не сами по себе в отрыве от материи, а находятся в такой универсальной взаимосвязи, в которой они теряют самостоятельность и выступают как стороны единого и многообразного целого.
Всякий материальный процесс развивается в одном направлении – от прошлого к будущему, свидетельствуя о связи движущейся материи со временем и необратимости последнего.
Поэтому время всегда выступало и выступает и как условие производства, и как специфический его ресурс, имеющий определенную «цену».

Содержание

1.Фактор времени………………………………………………...…3
2. Многовековая практика финансовых расчетов……………4
3. Основы финансовых вычислений………………………………5
4. Методы наращения и дисконтирования по простым и сложным процентам………………………………………….……7
5.Элементарные финансовые расчеты………………….……17
6. Выводы………………………………………………………..….29
7. Список использованной литературы………………….…..31

Вложенные файлы: 1 файл

фин мен Учёт фактора времени в финансовых расчётах (1).docx

— 100.50 Кб (Скачать файл)

, (11)

где 1 / (1 – d)^n – множитель наращения сложных антисипативных процентов.

Однако  практическое применение такого способа  наращения процентов весьма ограничено, и он относится скорее к разряду  финансовой экзотики.

Как уже отмечалось, наиболее широко сложные  проценты применяются при анализе  долгосрочных финансовых операций (n > 1). На большом промежутке времени в полной мере проявляется эффект реинвестирования, начисления “процентов на проценты”. В связи с этим вопрос измерения длительности операции и продолжительности года в днях в случае сложных процентов стоит менее остро. Как правило, неполное количество лет выражают дробным числом через количество месяцев (3/12 или 7/12), не вдаваясь в более точные подсчеты дней. Поэтому в формуле начисления сложных процентов число лет практически всегда обозначается буквой n, а не выражением t/K, как это принято для простых процентов. Наиболее щепетильные кредиторы, принимая во внимание большую эффективность простых процентов на коротких отрезках времени, используют смешанный порядок начисления процентов в случае, когда срок операции (ссуды) не равен целому числу лет: сложные проценты начисляются на период, измеренный целыми годами, а проценты за дробную часть срока начисляются по простой процентной ставке.

, (12)

где a – число полных лет в составе продолжительности операции,

t – число дней в отрезке времени, приходящемся на неполный год,

K –временная база.

В этом случае вновь возникает необходимость  выполнения календарных вычислений по рассмотренным выше правилам.

Например, ссуда в 3 млн. рублей выдается 1 января 1997 года по 30 сентября 1999 года под 28% годовых (процентная ставка). В случае начисления сложных процентов за весь срок пользования деньгами наращенная сумма составит:

S = 3 * (1 + 0,28)^(2 + 9/12) = 5,915 млн. рублей 

Если  же использовать смешанный способ (например, коммерческие проценты с точным числом дней), то получим:

S = 3 * (1 + 0,28)^2 * (1 + 272 / 360 * 0,28) = 6 млн. рублей 

Таким образом, щепетильность кредитора  в данном случае оказалась вовсе  не излишней и была вознаграждена  дополнительным доходом в сумме 85 тыс. рублей.

Важной  особенностью сложных процентов  является зависимость конечного  результата от количества начислений в течение года. Здесь опять  сказывается влияние реинвестирования начисленных процентов: база начисления возрастает с каждым новым начислением, а не остается неизменной, как в  случае простых процентов.

 Например, если начислять 20% годовых 1 раз в год, то первоначальная сумма в 1 тыс. рублей возрастет к концу года до 1,2 тыс. рублей (1 * (1+ 0,2)). Если же начислять по 10% каждые полгода, то будущая стоимость составит 1,21 тыс. рублей (1 * (1 + 0,1) * (1 + 0,1)), при поквартальном начислении по 5% она возрастет до 1,216 тыс. рублей. По мере увеличения числа начислений (m) и продолжительности операции эта разница будет очень сильно увеличиваться. Если разделить сумму начисленных процентов при ежеквартальном наращении на первоначальную сумму, то получится 21,6% (0,216 / 1 * 100), а не 20%. Следовательно, сложная ставка 20% при однократном наращении и 20% (четыре раза по 5%) при поквартальном наращении приводят к различным результатам, то есть они не являются эквивалентными. Цифра 20% отражает уже не действительную (эффективную), а номинальную ставку. Эффективной процентной ставкой является значение 21,6%. В финансовых расчетах номинальную сложную процентную ставку принято обозначать буквой j. Формула наращения по сложным процентам при начислении их m раз в году имеет вид:

, (13)

Например, ссуда размером 5 млн. рублей выдана на 2 года по номинальной сложной процентной ставке 35% годовых с начислением процентов 2 раза в год. Будущая сумма к концу срока ссуды составит:

S = 5 * (1 + 0,35 / 2)^(2 * 2) = 9,531 млн. рублей.

При однократном начислении ее величина составила бы лишь 9,113 млн. рублей (5 * (1 + 0,35)^2; зато при ежемесячном начислении возвращать пришлось бы уже 9,968 млн. рублей (5 * 1 + (0,35 / 12)^(12 * 2)).

При начислении антисипативных сложных процентов, номинальная учетная ставка обозначается буквой f, а формула наращения принимает вид:

(14)

Выражение 1 / (1 – f / m)^mn множитель наращения по номинальной учетной ставке.

Дисконтирование по сложным процентам также может  выполняться двумя способами  – математическое дисконтирование  и банковский учет. Последний менее  выгоден для кредитора, чем учет по простой учетной ставке, поэтому  используется крайне редко. В случае однократного начисления процентов  его формула имеет вид:

, (15)

где (1 –d)n – дисконтный множитель банковского учета по сложной учетной ставке.

при m > 1 получаем

, (16)

где f – номинальная сложная учетная ставка,

(1 – f / m)mn – дисконтный множитель банковского учета по сложной номинальной учетной ставке.

Значительно более широкое распространение  имеет математическое дисконтирование  по сложной процентной ставке i. Для m = 1 получаем

, (17)

где 1 / (1 + i)n – дисконтный множитель математического дисконтирования по сложной процентной ставке.

При неоднократном начислении процентов  в течение года формула математического  дисконтирования принимает вид:

, (18)

где j –номинальная сложная процентная ставка,

1 / (1 + j / m)mn – дисконтный множитель математического дисконтирования по сложной номинальной процентной ставке.

Например, требуется определить современную стоимость платежа в размере 3 млн. рублей, который должен поступить через 1,5 года, процентная ставка составляет 40%:

при m = 1 P = 3 / (1 + 0,4)^1,5 = 1,811 млн. рублей

при m = 2 (начисление 1 раз в полугодие) P = (3 / (1 + 0,4 / 2)^(2 * 1,5) = 1,736 млн. рублей

при m = 12 (ежемесячное начисление) P = (3 / (1 + 0,4 / 12)^(12 * 1,5) = 1,663 млн. рублей.

По  мере увеличения числа начислений процентов  в течение года (m) промежуток времени между двумя смежными начислениями уменьшается – при m = 1 этот промежуток равен 1 году, а при m = 12 – только 1 месяцу. Теоретически можно представить ситуацию, когда начисление сложных процентов производится настолько часто, что общее его число в году стремится к бесконечности, тогда величина промежутка между отдельными начислениями будет приближаться к нулю, то есть начисление станет практически непрерывным. Такая на первый взгляд гипотетическая ситуация имеет важное значение для финансов и при построении сложных аналитических моделей (например при разработке масштабных инвестиционных проектов) часто применяют непрерывные проценты.

Непрерывная процентная ставка (очевидно, что при непрерывном начислении речь может идти только о сложных процентах) обозначается буквой δ (читается “дельта”), часто этот показатель называют “сила роста”. Формула наращения по непрерывной процентной ставке имеет вид:

, (19)

где e – основание натурального логарифма (≈2,71828...),

edn – множитель наращения непрерывных процентов.

Например, чему будет равна через 3 года сумма 250 тыс. рублей, если сегодня положить ее на банковский депозит под 15% годовых, начисляемых непрерывно?

S = 250 * e^(0,15 * 3) = 392,1 тыс. рублей.

Для непрерывных процентов не существует различий между процентной, и учетной ставками – сила роста является универсальным показателем. Однако наряду с постоянной силой роста может использоваться переменная процентная ставка, величина которой меняется по заданному закону (математической функции). В этом случае можно строить очень мощные имитационные модели, однако математический аппарат расчета таких моделей достаточно сложен и не рассматривается в настоящем пособии, так же как и начисление процентов по переменной непрерывной процентной ставке.

Непрерывное дисконтирование с использованием постоянной силы роста выполняется  по формуле:

, (20)

где 1 / edn – дисконтный множитель дисконтирования по силе роста.

Например, в результате осуществления инвестиционного проекта планируется получить через 2 года доход в размере 15 млн. рублей. Чему будет равна приведенная стоимость этих денег в сегодняшних условиях, если сила роста составляет 22% годовых?

P = 15 / e^(0,22 * 2) = 9,66 млн. рублей.

 

5. Элементарные финансовые расчеты

 

Сфера использования финансовых вычислений значительно шире, чем расчет параметров банковских кредитов. Хорошее владение основами финансовой математики позволяет  сравнивать между собой эффективность  отдельных операций и обосновывать наиболее оптимальные управленческие решения. Для анализа финансовых показателей в настоящее время  применятся самые изощренные математические методы.

Наличие докторской степени по математике пока не является обязательным требованием  для финансового менеджера большинства  предприятий, однако знание элементарных свойств финансовых показателей  и основных взаимосвязей между ними, будут ему необходимы, начиная с первого дня практической работы.

Большую помощь финансисту оказывают специальные  компьютерные программы, а также  финансовые калькуляторы, позволяющие  автоматизировать вычисление многих показателей. Широкое распространение получило использование финансовых таблиц для  начисления сложных процентов и  дисконтирования. В этих таблицах приводятся значения множителей наращения (дисконтных множителей) для заданных n и i. Для нахождения наращенной стоимости достаточно умножить известную первоначальную сумму на табличное значение множителя наращения. Аналогично можно найти приведенную величину будущих денег, умножая их сумму на дисконтный множитель из таблицы. Рассмотрим некоторые другие элементарные способы использования результатов финансовых вычислений.

В условиях нестабильной экономики банки  и другие кредиторы с целью  снижения своего процентного риска  могут устанавливать переменные ставки процентов для различных финансовых операций.

 Например, по ссуде в размере 2 млн. рублей общей продолжительностью 120 дней в течение первых двух месяцев будут начисляться 30% годовых, а начиная с 61 дня, ежемесячно простая процентная ставка будет увеличиваться на 5% (обыкновенные проценты). Фактически, ссуда разбивается на несколько составляющих, по каждой из которых установлены свои условия. Необходимо найти наращенные суммы по каждой из составляющих, а затем сложить их. Вспомним, что аналогом процентной ставки в статистике является показатель “темп прироста”. При начислении простых процентов следует говорить о базисных темпах прироста, т.к. первоначальная сумма P остается неизменной. Данная задача в статистических терминах может быть интерпретирована как сложение базисных темпов прироста с последующим умножением на первоначальную сумму займа. Общая формула расчета будет иметь следующий вид:

, (1)

где N общее число периодов, в течение которых проценты начисляются по неизменной ставке. Подставив в это выражение условия нашего примера, получим:

S = 2 * (1 + (60 / 360 * 0,3) + (30 / 360 * 0,35) + (30 /360 * 0,4)) = 2,225 млн. рублей 

Соответственно  для сложных процентов, речь пойдет уже не о базисных, а о цепных темпах прироста, которые должны не складываться, а перемножаться:

(2)

Подставив условия примера, получим:

S = 2 * (1 + 0,3)60/360 * (1 + 0,35)30/360 * (1 + 0,4)30/360 = 2,203 млн. рублей

Данную  задачу можно решить несколько иным путем – рассчитав сначала  средние процентные ставки. Расчет средних процентных ставок (или расчет средних доходностей) вообще очень  распространенная в финансах операция. Для ее выполнения полезно опять  вспомнить о математико-статистической природе процентных ставок. Так как начисление простых процентов происходит в арифметической прогрессии, средняя простая ставка рассчитывается как средняя арифметическая взвешенная.

, (3)

где N – общее число периодов, в течение которых процентная ставка оставалась неизменной

Сложные проценты растут в геометрической прогрессии, поэтому средняя сложная процентная ставка рассчитывается как средняя  геометрическая взвешенная. В качестве весов в обоих случаях используются продолжительности периодов, для  которых действовала фиксированная  ставка.

(4)

Снова используем данные нашего примера. В  случае начисления простых процентов  получим:

īпр = ((0,3 * 60) + (0,35 * 30) + (0,4 * 30)) / 120 = 0,3375 = 33,75%

S = 2 * (1 + 0,3375 * 120 / 360) = 2,225 млн. рублей 

То  есть средняя процентная ставка составила 33,75% и начисление процентов по этой ставке за весь срок ссуды дает такой  же результат, как и тот, что был  получен по формуле (1). Для сложных  процентов выражение примет вид:

īсл = ((1 + 0,3)60 * (1 + 0,35)30 * (1 + 0,4)30)1/120 – 1 = 0,33686 = 33,69%

S = 2 * (1 + 0,33686)120/360 = 2,203 млн. рублей

Начисление  процентов по средней процентной ставке 33,69% также дает результат, эквивалентный  тому, что был получен по формуле (2).

Понимание различий механизмов наращения простых  и сложных процентов помогает избегать довольно распространенных ошибок. Например, следует помнить, что такой  процесс как инфляция, развивается  в геометрической, а не в арифметической прогрессии, то есть к нему должны применяться  правила начисления сложных, а не простых процентов. Темпы прироста цен в этом случае являются цепными, а не базисными, т.к. в каждом последующем  месяце рост цен относится к предыдущему  месяцу, а не к началу года или  какой-либо иной неизменной базе. Например, если инфляция в январе составила 5%, в феврале 4%, а в марте 9%, то общая  инфляция за квартал будет равна  не 18% (сумма месячных показателей), а 19,03% (1,05 * 1,04 * 1,09 – 1). Среднемесячный уровень  инфляции за этот квартал составит (1,05 * 1,04 * 1,09)1/3 - 1 = 5,98%. С другой стороны, если объявляется, что среднемесячная инфляция за год составила 5,98%, то это не значит, что общая инфляция за год в 12 раз больше (71,76%). На самом деле годовая инфляция в этом случае составит свыше 100,7% (1,059812 - 1).

Информация о работе Учет фактора времени в финансовых расчетах