Автор работы: Пользователь скрыл имя, 04 Мая 2013 в 19:53, лекция
Материальные тела могут находится в трех агрегатных состояниях: твердом, жидком и газообразном. Каждое из этих состояний характеризуется специфическими свойствами, которые определяются особенностями их молекулярной структуры, непосредственно связанной с силами взаимодействия молекул. Этими силами являются силы притяжения и отталкивания, действующие одновременно и зависящие от расстояния между частицами.
Таким образом, суммарный коэффициент местного сопротивления для диффузора равен
Наименьшие потери напора в диффузоре получаются при угле расширения его в пределах от 5 до 10°.
Постепенное сужение трубопровода. Постепенно сужающиеся участки трубопроводов (конфузоры) также нашли широкое применение в практике (рис. 35).
При постепенном сужении сечения скорость вдоль трубопровода возрастает, а давление падает. Отрыв потока от стенок в этом случае возможен только на выходе из конфузора в цилиндрическую часть трубопровода. Поэтому при одинаковых гидравлических характеристиках и размерах местные сопротивления в конфузоре меньше, чем в диффузоре.
Потери в конфузоре также равны сумме потерь на постепенное сужение и на трение по длине
Потери напора по длине можно определять по формуле (112).
Потери напора на сужение существенными будут при , и их можно определить по формуле
где
Здесь – коэффициент местного сопротивления при внезапном сужении; Ксуж – коэффициент смягчения, учитывающий плавное сужение, который зависит от угла конусности .
График распределения
Для определения скоростей по сечению потока теоретическим путем получена следующая формула
где – разность давлений в начале и конце трубопровода; – абсолютная вязкость жидкости; – длина трубопровода; – радиус трубопровода; – расстояние от оси трубопровода до слоя жидкости, у которого определяется скорость; – первоначальное напряжение сдвига.
Для определения скорости в ядре сечения необходимо принять , тогда
Расход жидкости определяется по формуле Букингама, полученной теоретически
где – приложенная разность давлений; – разность давлении, соответствующая началу движения, определяемая по уравнению .
Потери напора при движении аномальных (неньютоновских) жидкостей можно определять по уравнению Дарси-Вейсбаха (84), что подтверждено исследованиями Б. С. Филатова. Обычно режим движения турбулентный, и значение принимают в пределах от 0,017 до 0,025, при этом принимают тем больше, чем меньше концентрация раствора.
При производстве земляных работ получил широкое применение метод гидромеханизации. Грунт размывается струей воды, засасывается землесосом и транспортируется по трубам в отвал или к месту намыва грунта. Смесь воды с размельченным грунтом называется пульпой, или гидросмесью, а трубы по которым перекачивается пульпа, - пульповодами.
При некоторой достаточно малой скорости частицы грунта начинают осаждаться и заилять трубопровод. Эта скорость называется критической. Обычные формулы гидравлики, приведенные выше для трубопроводов с водой к пульпопроводам не применимы.
Гидравлический
расчет пульповодов заключается
в определении критических
Для критической скорости:
а) в трубопроводах диаметром до 200 мм
б) в трубопроводах диаметром больше 200 мм
где d – диаметр трубопровода, м; – средний диаметр твердых частиц, мм; – основание натуральных логарифмов; – удельный вес пульпы; – удельный вес воды; ; – так называемая «гидравлическая крупность», т. е. скорость падения частиц в спокойной воде.
Для потерь напора:
а) при критической скорости
б) при скорости выше критической
где – длина трубопровода; – ускорение свободного падения; – потери напора в трубопроводе при движении чистой воды при том же расходе; – потери напора при движении пульпы с критической скоростью; .
Остальные обозначения те же.
НАСАДКИ
Вопрос истечения жидкости через отверстия является одним из узловых моментов гидравлики. Ученые и инженеры изучали этот вопрос начиная с XVII в. Уравнение Д. Бернулли впервые было выведено при решении одной из задач на истечение жидкости из отверстия. При расчетах диафрагм, дырчатых смесителей, наполнении и опорожнении резервуаров, бассейнов, водохранилищ, шлюзовых камер и других емкостей решаются задачи на истечение жидкостей через отверстия. При решении этих задач определяют скорости и расходы жидкостей.
Экспериментально установлено, что при истечении жидкости из отверстий происходит сжатие струи, т. е. уменьшение ее поперечного сечения. Форма сжатой струи зависит от формы и размеров отверстия, толщины стенок, а также от расположения отверстия относительно свободной поверхности, стенок и дна сосуда, из которого вытекает жидкость. Сжатие струи происходит вследствие того, что частицы жидкости подходят к отверстию с разных сторон и по инерции движутся в отверстии по сходящимся траекториям.
Параллельное течение струй в отверстии возможно только в том случае, когда толщина стенок сосуда близка к размерам отверстия, а стенки отверстия имеют плавные очертания, с расширением внутрь сосуда. При этом отверстие превращается в коноидальный осадок (см. ниже).
Отверстия классифицируют следующим образом:
1.По размеру.
а) малые отверстия, когда или (рис. 38), где – диаметр круглого отверстия; – напор; – разность напоров при затопленном отверстии;
б) большие отверстия, когда или .
2. По толщине стенки, в которой сделано отверстие:
а) отверстия в тонкой стенке, когда или , где t – толщина стенки;
б) отверстия в толстой стенке, когда или .
3.Поформеразличают круглые, квадратные, прямоугольные, треугольные и другие отверстия.
3.1. Истечение жидкости через отверстия в тонкой стенке при постоянном уровне
Выведем формулы скорости и расхода жидкости при истечении через малое отверстие. Пусть жидкость вытекает из большого резервуара через малое отверстие в его дне или стенке (рис. 39).
Опытами установлено, что сжатое сечение струи находится от внутренней поверхности резервуара на расстоянии около половины диаметра отверстия. Эта величина обычно бывает мала сравнительно с напором Н в резервуаре, и можно считать, что центр отверстия и центр сжатого сечения струи находятся на одинаковой высоте, тем более при отверстии в боковой стенке.
Высоту уровня жидкости в резервуаре Н над центром отверстия называют геометрическим напором. В общем случае давление в резервуаре отличается от давления в пространстве, куда истекает жидкость.
Проведем плоскость сравнения 2
Уравнение Д. Бернулли применить к сечению отверстия нельзя, так как струйки в последнем сходятся под большими углами, и движение жидкости в нем не плавно изменяющееся.
Напишем уравнение Д. Бернулли для сечений 1-1 и 2-2
где – скорость подхода жидкости к отверстию в резервуаре; – средняя скорость течения в сжатом сечении; – коэффициент местного сопротивления при истечении через отверстие.
Перенесем наружное давление в левую часть и обозначим величину
Эта величина называется напором истечения.
В правой части уравнения (124) вынесем за скобки . Тогда уравнение Д. Бернулли сведется к
откуда
Обозначим величину
Величину называют коэффициентом скорости.
С учетом введенного обозначения
Так как коэффициент Кориолиса , а коэффициент местных потерь напора в отверстии , то . По опытным данным , а . Отсюда
Для идеальной жидкости и . Тогда
Это уравнение называется формулой Торичелли. Оно показывает, что скорость в начале вытекающей струи равна скорости свободного падения тела, упавшего с высоты .
Когда поперечное сечение резервуара много больше площади живого сечения отверстия, а скорость жидкости в резервуаре незначительна (к примеру, меньше 0,1 м/сек), то скоростным напором можно пренебречь. В случае, когда давления снаружи и в резервуаре одинаковы , то весь напор истечения сводится к геометрическому напору, т. е. . Это бывает обычно при расчете истечения из открытых резервуаров в атмосферу.
Расход жидкости определится как произведение скорости истечения на площадь сжатого сечения струи
где – коэффициент сжатия струи, равный отношению площади сжатого сечения к площади отверстия .
Величину обозначают через и называют коэффициентом расхода.
Таким образом, расход жидкости, вытекающей через отверстие, определяют по формуле
При точных измерениях размеров сжатого сечения струи установлено, что при совершенном сжатии струи . В этом случае . В общем же случае коэффициент расхода зависит от условий сжатия.
При истечении не в газовую среду, а в смежный резервуар с той же жидкостью (что принято называть истечением «под уровень»), т. е. когда отверстие затоплено с обеих сторон, в качестве геометрического напора Н принимают разность уровней жидкости в резервуарах. Числовые значения коэффициентов , и остаются при этом практически теми же.
В случае круглого отверстия, расположенного на значительном расстоянии от стенок, струя сжимается со всех сторон одинаково, и в сжатом сечении имеет также форму круга; при этом сжатое сечение находится от кромок отверстия на расстоянии около половины диаметра отверстия – . Величина коэффициента сжатия зависит от относительных размеров отверстия и от положения его относительно стенок резервуара и поверхности жидкости.
В зависимости от расположения отверстия различают следующие виды сжатия (рис. 40):
1) полное сжатие со всех сторон (отверстия 1 и 2);
2) неполное, когда сжатия нет с одной или нескольких сторон (отверстия 3, 4 и 5).
Полное сжатие подразделяют на:
а) совершенное, когда и (отверстие 1);
б) несовершенное, когда и (отверстие 2).
Форма сечения струи жидкости при истечении претерпевает изменения.
Эти изменения называются инверсией. Инверсия происходит вследствие того, что скорости подхода к отверстию в разных точках его периметра различны и вследствие сил поверхностного натяжения. На рис. 41 показано изменение формы струи при истечении через квадратное отверстие по мере удаления от резервуара.
При несовершенном сжатии коэффициент расхода вычисляют по формулам:
для круглых отверстий
для прямоугольных отверстий
где – значение коэффициента расхода при совершенном сжатии; и – поправочные коэффициенты, зависящие от отношения площади сечения отверстий к площади сечения сосуда . Значения этих коэффициентов принимают по таблице:
Значение величин и при несовершенном сжатии
0,10 |
0,20 |
0,30 |
0,40 |
0,50 |
0,60 |
0,70 |
0,80 |
0,90 |
1,00 | |
0,014 |
0,034 |
0,059 |
0,092 |
0,134 |
0,189 |
0,26 |
0,351 |
0,471 |
0,631 | |
0,019 |
0,042 |
0,071 |
0,107 |
0,152 |
0,208 |
0,278 |
0,365 |
0,473 |
0,608 |
При неполном сжатии коэффициент расхода вычисляют по уравнениям:
для круглых отверстий
для прямоугольных отверстий
где – коэффициент расхода при полном сжатии; – часть периметра, на котором нет сжатия; Р – полный периметр отверстия.
При расчете больших отверстий значения коэффициентов расхода, рекомендованных Н. Н. Павловским, приведены в таблице:
Значения коэффициентов расхода для больших отверстий
Виды отверстий и характер сжатия струи |
коэффициент расхода |
Большие отверстия с несовершенным, но всесторонним сжатием |
0,70 |
Большие отверстия с умеренным боковым сжатием, без сжатия по дну |
0,80 |
Средние отверстия (шириной до 2 м) с весьма слабым боковым сжатием, без сжатия по дну ………. |
0,90 |
Большие отверстия (шириной 5-6 м) с весьма слабым боковым сжатием, без сжатия по дну ………… |
0,95 |
Информация о работе Основные понятия и формулы по "Гидравлике"