Автор работы: Пользователь скрыл имя, 29 Апреля 2014 в 09:51, контрольная работа
Современная химическая промышленность выпускает огромное количество разнообразнейших продуктов и товаров, что естественно связанно с проведением, оптимизацией и управлением определённых процессов, в частности химических реакций. Это требует проведения огромной научно-исследовательской работы, позволяющей переносить химические реакций, необходимых для получения ценных химических продуктов из лабораторных условий на промышленный уровень.
Введение …………………………………….…………………………….... 3
1. Задание ………………………………………...……………….. 5
2. Литературный обзор ……….…………………………...……... 6
2.1. Гипотеза о схеме превращения …….………………………... .6
2.2. Гипотеза о механизме реакции ……………………………….. 6
2.2.1. Влияние субстрата............................................................. 7
2.2.2. Влияние атакующей части-цы............................................8
2.2.3. Влияние уходящей части-цы………………………...……9
2.2.4. Влияние растворителя уходящей части-цы…………….10
3. Обсуждение результа-тов.……………………………………...13
3.1. План кинетических экспериментов ………………………….13
3.2. Анализ кинетических кривых ……………………...………. 17
3.3. Расчёт параметров кинетической модели …………………...19
3.4. Проверка адекватно-сти………………………………………..32
4. Экспериментальная часть ……………………………………..33
4.1. Выбор метода анализа ключевого компонента ……………..33
4.2. Приготовление растворов реагирующих веществ ………… 46
4.3. Схема установки, подбор реактора …………………….....47
4.4. Прописи кинетических экспериментов ………………….… 49
Выводы ……………………………………………………………………..55
Список используемой литературы ……………………………………….56
В работе используется серебряный электрод как индикаторный, так как потенциал его определяется концентрацией ионов серебра:
где φ0Ag = 0,8 В, [Ag+] - концентрация ионов серебра в данный момент титрования, г-ион/л.
При титровании раствора AgNO3 раствором NaCl концентрация ионов серебра уменьшается, и потенциал серебряного электрода будет соответственно уменьшаться. Можно теоретически рассчитать изменение потенциала серебряного электрода (а также э.д.с. гальванического элемента) в процессе титрования, и экспериментально это подтвердить потенциометрическими измерениями.
До прибавления эквивалентного объема NaCl, т.е. до точки эквивалентности потенциал серебряного электрода рассчитывается по уравнению (4.7), где [Ag+] – концентрация ионов серебра, еще не вступивших в реакцию с хлоридом; в момент эквивалентности, при прибавлении эквивалентного количества осадителя и поэтому
после точки эквивалентности при избытке осадителя , где [Cl-] определяется избытком титранта
ПР - const, поэтому
Кривая титрования будет иметь вид, изображенный на рис. 4.1.
Рис. 4.1. Кривая титрования AgNO3 раствором NaCl.
При титровании галогенида, например Сl-, раствором AgNO3 потенциал серебряного электрода будет увеличиваться, т.к. концентрация ионов серебра возрастает. До точки эквивалентности, когда переведены в осадок еще не все ионы хлора , где [Cl-] - концентрация непрореагировавших ионов, г-ион/л.
Соответственно потенциал индикаторного электрода находят по уравнению (4.10). В точке эквивалентности, когда ионы хлора практически будут осаждены, а концентрация ионов серебра станет равной концентрации ионов хлора в растворе , потенциал индикаторного электрода по уравнению (4.8). После точки эквивалентности, концентрация ионов серебра будет определяться избытком титранта и φAg рассчитывают по (4.7). Кривая титрования показана на рис. 4.2.
Рис. 4.2. Кривая титрования хлоридов раствором AgNO3.
При потенциометрическом титровании смеси иодидов и хлоридов получится кривая титрования (рис. 4.3) с двумя скачками, соответствующими моментам эквивалентности реакций осаждения иодидов и хлоридов [7].
Рис 4.3. Кривая титрования иодидов и хлоридов раствором AgNO3.
Методика проведения анализа.
Дифференцированное определение I- и Cl- в их смеси проводят титрованием ~ 0,05 н. стандартным раствором нитрата серебра с серебряным индикаторным электродом и Нас.КЭ (насыщенным каломельным электродом) сравнения. Э.д.с. потенциометрической ячейки измеряют компенсационным методом.
Пока в растворе присутствуют ионы иодида, потенциал Нас.КЭ больше потенциала серебряного электрода, поэтому последний должен быть подключен к отрицательной клемме потенциометра [6].
До начала работы необходимо:
Работа состоит из двух частей:
а) Определение методом потенциометрического титрования концентрации раствора AgNO3 ( ).
В чистый стакан для титрования отобрать с помощью бюретки 3 мл раствора AgNO3 поместить в стакан магнитный элемент и опустить электроды так, чтобы они не касались магнитного элемента в покое и в дальнейшем при перемешивании раствора. Прилить в стакан дистиллированной воды столько, чтобы рабочие части электродов (металлическая часть индикаторного и место контакта с раствором электрода сравнения) были полностью погружены в раствор. Включить магнитную мешалку и подобрать подходящий режим перемешивания. Включить измерительный прибор и измерить начальную величину э.д.с. полученного гальванического элемента. Затем титровать стандартным раствором NaCl, прибавляя его по 0,2 мл и измеряя э.д.с. после каждой порции прибавленного титранта. Полученные измерения заносят в таблицу. В начале титрования э.д.с. мало изменяется, затем вблизи точки, эквивалентности происходит резкое, скачкообразное изменение, после конца скачка опять наблюдаются близкие по значению величины э.д.с. Титровать необходимо до получения 6 - 7 измерений близких по значению величии э.д.с. после конца скачка титрования (~ до 140 - 150 мВ, т.е. 0,14 -0,15 В).
б) Определение методом потенциометрического титрования содержания хлоридов и иодидов при совместном присутствии.
Полученный у лаборанта анализируемый раствор, содержащий смесь солей KI и КCl, титруют раствором AgNO3 по выше описанной методике. Измерения записывают в таблицу. В отличие от предыдущего титрования здесь должно получиться два скачка титрования, то есть два резких скачкообразных изменения э.д.с. Титрование заканчивают, добавив 6 - 7 порций титранта после конца второго скачка титрования (~ до 420 - 450 мВ, т.е. до 0,42-0,45 В).
По полученным данным строят кривые титрования - графические зависимости э.д.с. от объема (V) титранта (рис. 4.1, 4.2, 4.3). На скачках титрования находят точки эквивалентности и соответствующие им эквивалентные объемы титрантов, израсходованные на взаимодействие с титруемыми веществами.
Рассчитывают:
Концентрацию AgNO3 по формуле:
где - концентрация стандартного раствора NaCl, взятого для титрования, н; - объем стандартного раствора NaCl, пошедший на титрование AgNO3, мл. (Рис. 4.1);
- объем раствора AgNO3, отобранный для титрования, 3,00 мл.
Содержание хлор-иона и иона йода в анализируемом растворе рассчитывают по формулам:
где V1 – объем AgNO3 пошедший на титрование иодида, соответствующий первому скачку на кривой титрования смеси солей, мл (рис 4.3); V2 – общий объем AgNO3, пошедший на титрование йодида и хлорида, соответствующий второму скачку на кривой титрования смеси солей, мл (рис. 4.3); - концентрация раствора AgNO3, рассчитанная по формуле (4.11); ЭCl-, ЭI- - эквиваленты хлора и йода, равные их атомным массам.
Содержание KI и KCl а анализируемом растворе рассчитывается но формулам:
где ЭKI и ЭС3Н7Cl - эквиваленты KI и C3H7Cl, равные их молекулярным массам .
моль/л
4.2. Приготовление растворов реагирующих веществ.
Вещество иодид калия в условиях реакции является кристаллическим хорошо растворимым веществом, поэтому приготовление его раствора заключается в растворении его в растворителе (ацетон).
Вещество 1-хлорпропан в условиях реакции является жидкостью растворимой в ацетоне, поэтому приготовление его раствора заключается в растворении его в ацетоне или нахождении готового реактива (ацетон который содержит 1-хлорпропан, концентрация принимается максимально возможной).
Объём реакционной массы составляет 900 мл.
Опыт 1. Т.е. Vр.м. = 900 мл, СA,0 = 2,0 моль/л, СY,0 = 1,0 моль/л, СZ,0 = 0,0 моль/л, tº = 20ºC, растворитель – ацетон.
Для приготовления раствора 1-хлорпропана концентрацией 2,0 моль/л необходимо
Для приготовления раствора иодистого калия с концентрацией 1,0 моль/л необходимо
Взвесить 149,4 г чистого иодистого калия, количественно перенести в колбу, долить 227,855 мл ацетона.
Всего 609,22 мл ацетона.
4.3. Схема установки,
подбор реактора и
Для
проведения кинетических
Рис. 4.4. Схема экспериментальной установки.
1 – стеклянный трёхгорлый реактор с рубашкой; 2 – ртутный термометр с контактами (РТК); 3 – штатив; 4 – стеклянная мешалка; 5 – электропривод мешалки; 6 – пипетка для отбора аликвот; 7 – трубки силиконовые; 8 – ультратермостат.
Реактор представляет стеклянный трёхгорлый реактор 1 с напаянной стеклянной рубашкой. В реакторе через центральный шлиф помещена мешалка 4, приводимая в движение электроприводом 5.
Реактор снабжён следующими узлами:
а) узел термостатирования представлен рубашкой реактора, трубками 7, соединяющими её с ультратермостатом 8, который поддерживает постоянную температуру теплоносителя (вода) и прокачивает его через рубашку со скорость, обеспечивающей постоянство температуры в ректоре. Объём рубашки должен составлять не менее ½ объёма реактора. Также дополнительно имеется ртутный термометр с контактами (РТК), посредством которого отслеживается температура реакционной массы, и в случае превышения температуры ультратермостат должен автоматически увеличивать скоростью подачи теплоносителя в рубашку реактора.
б) узел моментального ввода реагентов представляет собой мерный цилиндр и стеклянную воронку, посредством которой через свободный шлиф в реактор вводиться второй реагент. Такая реализация этого узла возможна, поскольку константа скорости протекания реакции очень мала и реакция протекает медленно. Т.е. время ввода второго реагента по сравнению со временем протекания реакции совершенно незначительно, т.е. практически мгновенно.
в) узел моментального отбора проб представляет собой пипетку с резиновой грушей и химический стаканчик для взятой аликвоты. Аналогично предыдущему пункту можно считать время отбора пробы совершенно незначительным.
Учитывая дальнейшее прохождение реакции во взятой аликвоте -наиболее удобным и надёжным методом стопорения реакции является метод захолаживания. Т.е. так как скорость протекания реакции мала, и она очень сильно зависит от температуры, то даже при охлаждении аликвоты базового опыта проточной водой наблюдается падение температуры. При этом реакция практически перестаёт идти. Но для получения более высокой точности возможно использование смеси воды со льдом, для последующего охлаждения аликвоты.
Подбор объёма реактора. Поскольку для определения кинетики данной реакции наиболее подходит РИС, то необходимо определить его объём.
В плане экспериментов принято для построения кривой 10 точек, для каждой из которых по требованиям аналитической химии анализ выполняется 3 раза. Следовательно, т.к. анализ требует аликвоту объёмом 3 мл, то для определения одной точки на кривой необходимо отобрать 3 мл x 3 = 9 мл реакционной массы. Отсюда, для проведения полного плана экспериментов необходимо 9 мл x 10 = 90 мл реакционной массы.
Отсюда в соответствии с кинетическим правилом, которое говорит о том, что объём аликвотной части не должен превышать 10% от общего объёма, имеем, что 90 мл / 0,1 = 900 мл. Также учитывая коэффициент заполнения для не пенящихся веществ: 900 мл / 0,9 = 1000 мл.
А т.к. наиболее близкий стандартный объём реактора – 1 л., то соответственно для проведения кинетических экспериментов необходим стеклянный реактор объёмом 1 л.
Доказательство идеальности реактора.
1) Так как в реакторе организовано эффективное перемешивание и отсутствие застойных зон, вследствие сферической формы реактора, то обеспечивается моментальное распределение второго реагента по объёму реактора. Что доказано при тестировании химическими и визуальными трассерами. При тестировании химическим трассером было показано, что раствор в реакторе приобретает однородную концентрацию по всему объёму в течение малого промежутка времени. А при внесении визуального раствора аналогично раствор приобретал равномерную окраску за очень малый промежуток. Что удовлетворяет условию идеальности проведения данной реакции.
2) Эффективная система термостатирования и эффективная система перемешивания обеспечивает моментальное распределение колебаний температуры по объёму, возможных при подаче второго реагента.
Что было доказано внесением трассеров в реактор с пониженными и повышенными температурами, в результате чего происходило быстрое выравнивание температуры реакционной среды до температуры термостатирования.