Автор работы: Пользователь скрыл имя, 16 Ноября 2012 в 09:01, реферат
Биология, как никакая другая природоведческая наука, обнаруживает непосредственную зависимость решения той или иной проблемы от мировоззренческой позиции ее исследователей. Целостное восприятие феномена жизни, образ биологической реальности играют в исследовательской работе биолога специфическую роль, обусловленную как природой этого образа, так и способом его функционирования в эксперименте и теории.
ВВЕДЕНИЕ 3
РАЗДЕЛ 1. ОСОБЕННОСТИ ПРОЦЕССА ПОЗНАНИЯ В СОВРЕМЕННОЙ БИОЛОГИЧЕСКОЙ НАУКЕ. 4
РАЗДЕЛ 2. ПРОБЛЕМЫ ВЗАИМООТНОШЕНИЯ ТЕОРЕТИЧЕСКОГО И ЭМПИРИЧЕСКОГО В СОВРЕМЕННОЙ БИОЛОГИИ И МЕДИЦИНЕ. 6
РАЗДЕЛ 3. ФИЛОСОФСКИЕ АСПЕКТЫ ПРОЦЕДУР МОДЕЛИРОВАНИЯ В СОВРЕМЕННОЙ БИОЛОГИИ. 9
РАЗДЕЛ 4. ПРАКТИЧЕСКИЙ ПРИМЕР ПРИМЕНЕНИЯ МОДЕЛИРОВАНИЯ В РЕШЕНИИ ИЗУЧАЕМОЙ ПРОБЛЕМЫ. 13
РАЗДЕЛ 5. ФИЛОСОФСКАЯ ПРОБЛЕМА БИОЛОГИЧЕСКОЙ РЕАЛЬНОСТИ. 14
ЗАКЛЮЧЕНИЕ. 18
РАЗДЕЛ 4. ПРАКТИЧЕСКИЙ ПРИМЕР ПРИМЕНЕНИЯ МОДЕЛИРОВАНИЯ В РЕШЕНИИ ИЗУЧАЕМОЙ ПРОБЛЕМЫ.
Перед нами стояла задача – выявить среди представителей исследуемой группы машинистов локомотивного депо малоизвестные факторы, предрасполагающие к развитию гипертонической болезни (ГБ).
Эмпирическим путем были выявлены некоторые факторы риска развития ГБ как в популяции в целом, так и в определенных группах людей. Таким образом, чтобы выявить новые факторы риска, необходимо максимально исключить влияние уже установленных факторов.
К сожалению, при простом анализе группы обследуемых, это сделать довольно затруднительно.
Согласно литературным данным, лица, имеющие избыточный прирост АД в ответ на психоэмоциональную нагрузку, в последующем чаще склонны к развитию ГБ, чем индивидуумы с адекватным приростом. Поэтому было решено разбить весь контингент на две соответствующие группы, с целью определения возможных важных различий у их представителей.
Итак, мы столкнулись с необходимостью изучения реакции артериального давления (АД) у машинистов локомотивов во время периода психоэмоционального напряжения, чему наиболее соответствует период выполнения ими своих профессиональных обязанностей, т.е., ведения локомотива. Существует, как минимум, два пути решения этой проблемы.
Первый - непосредственный – использование оборудования, которое позволяло бы автоматически регистрировать АД у испытуемого непосредственно во время рейса. Но этот путь предполагал наличие у нас соответствующего оборудования, которого мы не имели.
Второй путь – опосредованный – это построение соответствующей модели. Системы моделирования профессиональных ситуаций уже давно и прочно заняли свое место в практике профессионального отбора и подготовки кадров, где нашли многостороннее применение. В то же время, новизна ситуации и ответственность за результат обследования при использовании такой системы позволяют добиться должного уровня психоэмоционального напряжения и исключить элементы обыденности при сохранении профессионального характера стрессора. Для моделирования психоэмоционального стресса могут быть предложены различные способы. Но между ними имеются и существенные отличия. Поэтому немаловажное значение имеет использованный в исследовании тип психоэмоциональной нагрузки. В плане профессионального стресса, известно, что количественная рабочая нагрузка сама по себе не является стрессовым фактором при работе, а более важно время ожидания и непредсказуемость.
Критериальными для ж/д
Во время тестирования машиниста с помощью этой программы на ЭВМ мы и проводили свои измерения.
РАЗДЕЛ 5. ФИЛОСОФСКАЯ ПРОБЛЕМА БИОЛОГИЧЕСКОЙ РЕАЛЬНОСТИ.
В общем контексте биологического знания в образах реальности отражается не столько "объяснение" биологических явлений, сколько "понимание" целостного феномена жизни, выражающее конкретно-научное мировоззрение того или иного эволюциониста. Поэтому их использование ставит задачу перехода от сугубо логического исследования структурных элементов научно-исследовательской деятельности к ее мировоззренческим аспектам. Более того, понятие образа реальности имеет непосредственное отношение к понятию "концептуальные предпосылки науки". Содержание последнего уже не остается в пределах гносеологии, но захватывает тот существенный момент, что определенная совокупность исходных принципов, по которым строится отношение к тому или иному фрагменту действительности, приобретает мировоззренческое звучание.
Мировоззренческая функция понятия реальности предопределяется уже тем фактом, что в нем непременно присутствует не только знание, но и убеждение. Физик или биофизик изучает живое с убеждением в конечном торжестве физического стиля мышления над временно, как ему кажется, неподатливым биологическим объектом. Мировоззренческая установка ведет к определенным оценочным суждениям относительно методологических средств познания.
Объект биологического эксперимента, методы его проведения и конкретная цель, формулируемая исследователем, - эти основные компоненты экспериментальной деятельности и их взаимодействие претерпели за последние два - три десятилетия существенные изменения. В настоящее время трудно говорить о "чисто" биологическом эксперименте - вся совокупность физико-химических, кибернетических, математических методов, используемых в эксперименте, дает возможность определить его как биологический только в том смысле, что он направлен на познание биологического объекта. Активная роль биологии в решении экологических, медицинских, научно-технических (бионика), экономических и многих других проблем создает ту потребность широкого обсуждения содержания и функции современного биологического эксперимента, которая реализуется на основе привлечения мировоззренческих, этических, ценностных аспектов. До сих пор бытующее представление о "нейтральности" эксперимента к мировоззренческой проблематике обнаруживает свою несостоятельность, если ориентироваться на реальную общественную роль современной биологии, на те поистине грандиозные задачи, которые ставит перед ней современное общественное развитие. Эта причастность биологии как науки о жизни к мировоззренческой проблематике обнаруживается уже в том, казалось бы, сугубо гносеологическом срезе, с которого мы начинаем обсуждение экспериментальной деятельности в биологии. Субъект-объектное отношение поистине составляет основной смысл, основное содержание эксперимента, поскольку в нем человек действует "против природы с помощью самой природы" (Гегель). В эксперименте исследователь как бы навязывает природному объекту свою цепь, спои вопросы к нему, хотя и приготовленные предшествующим знанием об объекте, но трем не менее остающиеся в определенном смыслив внешними для объекта. В отличии от наблюдения эксперимент имеет дело не только с управляемым процессом, осознанно направленным к определенной, заранее сформулированной, цепи, но и с особым предметом. Экспериментатор неизбежно упрощает естественный объект, когда стремится изучить определенные его свойства, "очищает" его от случайных воздействий, создает ему "идеальные" условия для проявления именно тех свойств, которые ставятся в центр эксперимента.
Объектом эксперимента может выступать конкретное биологическое образование (структура, система), либо отдельная функция, либо механизм процесса, раскрывающий взаимодействие структур и функций. В целом вопрос о системности живой природы не вызывает сомнений. Более того, именно изучение живых материальных образований в значительной мере способствовало формированию системных представлений о мире.
Основными системами живого, образующими различные уровни организации, в настоящее время признаются: 1) вирусы - системы, состоящие в основном из двух взаимодействующих компонентов: молекул нуклеиновой кислоты и молекул белка; 2) клетки - системы, состоящие из ядра, цитоплазмы и оболочки; каждая из этих подсистем, в свою очередь, состоит из особенных элементов; 3) многоклеточные системы (организмы, популяции одноклеточных); 4) виды, популяции - системы организмов одного типа; 5) биоценозы - системы, объединяющие организмы различных видов; 6) биогеоценоз - система, объединяющая организмы поверхности Земли; 7) биосфера - система живой материи на Земле.
Система каждого уровня отличается от других уровней и по структуре, и по степени организации (биологическая классификация). Но взаимодействие элементов системы не обязательно предполагает жесткую, постоянную связь. Эта связь может носить временный, случайный, генетический, целевой характер. Несмотря на все растущий авторитет структурно-функциональных исследований в биологии, центральным объектом экспериментальной деятельности стал механизм процессов жизнедеятельности. Безусловно, структурные данные подготовили почву для перехода к изучению механизмов и по мере своего роста продолжают питать это направление исследования, однако именно оно концентрирует в себе как традиционные, так и новейшие методы и в целом характеризует современный биологический эксперимент как научную деятельность по раскрытию не только взаимосвязи процессов жизнедеятельности, но и детерминации этой взаимосвязи, причинной ее обусловленности.
В экспериментальной деятельности исследователь выступает как целостный человек, тем более если учесть, что современный биологический эксперимент требует полной отдачи сил, времени, нервной энергии, мысли. Сложность биологического объекта, различные уровни его целостности, находящиеся в иерархических взаимосвязях, несовместимы с попытками свести целостный подход исследователя к какому-то общему знаменателю, выступающему универсальным ключом в решении любых биологических проблем.
Использование методов точных наук предоставляет небывалые ранее возможности объективной оценки результатов эксперимента, но вместе с тем повышает и уровень требований не только к эксперименту, но и к его правильной, грамотной с общебиологической точки зрения интерпретации, к его связи с проверенной теоретической концепцией. Тем самым экспериментатор вое активнее втягивается в такую самооценку своей деятельности, которая предполагает широкую общебиологическую культуру, осознание современных тенденций развития биологического знания. В этом смысле "математический склад мышления" оказывается отдельным проявлением более фундаментального процесса развития рефлексии знания. Именно в математизации биологического знания прежде всего выражается опережающая роль логического мышления. Математическая экология и математическая теория естественного отбора не только обнаруживают возрастающую роль математических идей, их значение в прокладывании путей экспериментальной деятельности. На этом примере можно видеть и другую особенность современного биологического эксперимента, заключающуюся в том, что наряду с биологическим объектом, в центр познания становится отношение между объектами, системные связи, создающие целостность как самого объекта, так и их сообществ.
Системные связи как предмет исследования все больше становятся исходным пунктом экспериментальной деятельности буквально на всех уровнях познания живого. Не только экология, изучение биосферы, экспериментальное подтверждение естественного отбора, т.е. заведомо системные исследования, но и "нижние этажи" биологического знания, такие, как молекулярная биология, молекулярная генетика, вое больше базируются на системных представлениях, открывающих широкую дорогу для применения математики и кибернетики, в цепом обеспечивающих необходимый уровень точности знания того, что собой представляет та или иная биологическая система, ее реальная структура и способ функционирования.
На этих "нижних" этажах биологического знания наиболее ясно проявляется общая для всех форм биологического эксперимента тенденция увязать системные связи со свойствами подсистем, элементов. Ввиду сложности объектов это сделать значительно труднее на "высших" этажах знания.
Поэтому так ценны те направления экспериментального исследования, которые "приземляют" свойства целостности к характеристикам составляющих их элементов, обнаруживают зависимость системных связей от "первородной" определенности входящих в систему элементов.
Активность субъекта возрастает по мере развертывания связей экспериментальной деятельности с теоретическими и мировоззренческими проблемами науки.
Биология не составляет исключения
в отношении той общей
От этапа к этапу наращивался потенциал познания жизненных явлений, повышался уровень запросов биологии к эксперименту, однако нельзя не видеть, что "поставщиком" идей была физика.
За каждым из методов, обеспечивающим очередной скачок в биологическом познании, стояла определенная физическая концепция, да и сам метод, несмотря на трансформацию сообразно новому объекту, оставался физическим по своему содержанию. Поэтому цикличность взаимодействия идей и методов скорее можно изобразить такой схемой: идеи (физические) -> методы -> идеи (биологические). Иначе говоря, полного цикла не получается, так как нет обратной связи от биологических идей к идеям физическим, выступающим ведущей силой в изменении стиля эксперимента на молекулярном и субмолекулярном уровнях живого.
При этом нельзя недооценивать того, что мы назвали "запросом" биологии, поскольку эти запросы, опираясь на предшествующие достижения эксперимента, играют громадную роль в определении направления последующей экспериментальной деятельности. Именно в этом моменте ярче всего проявляется биологическое содержание эксперимента - требования к нему, к физико-химическим методам формируются общими задачами познания именно биологического объекта во всей его специфичности.
Это можно проследить на каждом из вышеприведенных этапов развития эксперимента. Так, например, переход к методам при жизненного исследования обусловливался тем, что даже наиболее успешное биохимическое познание связано с разрушением живого субстрата, с получением лишь отдельных звеньев общей картины жизненных процессов. Как ни богато наше современное знание молекулярной организации клетки, оно остается знанием статики до тех пор, пока нeразработаны досконально методы прижизненного исследования.
Например, двуспиральная модель ДНК была не только геометрической проверкой теории, но и одновременно моделью биологического объекта, труднодоступного для наблюдения. Модель как посредник между теорией и экспериментом в данном случае связывает небиологическую теорию с биологическим объектом. Такой способ связи теории (идеи) с объектом характерен прежде всего для физико-химической биологии, где "внешняя" идея, материализуясь в технические устройства и методы эксперимента, оказывает непосредственное воздействие на формирование его содержания.
Другой тип связи раскрывается в том случае, когда теория (идея) принадлежит собственно биологическому знанию, имеет давние традиции использования эмпирических данных для своего обоснования и соответственно - специфичную обратную связь с эмпирическим уровнем познания. Наиболее показательна здесь совокупность эволюционных идей, для обоснования которых использовались сначала данные наблюдения, а затем и эксперимента. Экспериментальное исследование причин и механизмов эволюционного процесса в последарвиновский период целиком направлялось опережающей ролью идей, выраженных в принципах дарвинизма.