История новоевропейской философии в ее связи с наукой

Автор работы: Пользователь скрыл имя, 08 Июня 2014 в 22:53, реферат

Краткое описание

Становление новоевропейской культуры отмечено рождением того феномена, который впоследствии получил название "духа капитализма" и первые ростки которого, связанные прежде всего с увеличением денежного запаса, историки политэкономии обнаруживают уже в XIV-XV вв. В Италии, в частности в богатой Флоренции, где в XIV в. деньги стали играть большую роль в хозяйстве и натуральный обмен все больше вытеснялся денежным, постепенно входит в быт важнейший элемент капиталистического хозяйства - счет, отчетность, бухгалтерский учет - "клеточка" капиталистически-рациональной экономики. Благодаря этому человек, по словам В. Зомбарта, "приучается к чисто количественному воззрению на мир". В XV в. во флорентийском деловом мире распространился способ рационального ведения коммерческих и вообще хозяйственных дел, о чем свидетельствуют в частности "Семейные книги" флорентийца Леона Баттиста Альберти - очень интересный исторический документ.

Вложенные файлы: 1 файл

istoria_novoevrop.doc

— 2.11 Мб (Скачать файл)

 

Различия между Галилеем и платоновско-пифагорейской научной программой проходят по той же линии, по какой было намечено различие между Николаем Кузанским, с одной стороны, и Платоном и неоплатониками - с другой. Как и Кузанец, Галилей критикует Аристотеля и уважительно отзывается о Платоне; но, подобно Кузанцу, он в ряде принципиальных вопросов решительно отходит от Платона, и отходит как раз в том направлении, которое было указано Николаем Кузанским. Это легче всего увидеть при рассмотрении проблем бесконечного и неделимого, как они решаются Галилеем.

 

В "Беседах и математических доказательствах", касаясь вопроса о причинах связности тел, Галилей высказывает несколько гипотетических положений о строении материи и в этой связи оказывается вынужденным поставить проблему континуума. "По моему мнению, - говорит Сальвиати, представляющий взгляды самого Галилея, - связность эта может быть сведена к двум основаниям: одно - это пресловутая боязнь пустоты у природы; в качестве другого (не считая достаточной боязнь пустоты) приходится допустить что-либо связующее, вроде клея, что плотно соединяет частицы, из которых составлено тело". При последующем обсуждении оказывается, что вторую причину нет надобности и допускать, поскольку для объяснения сцепления тел вполне достаточно первой причины. "...Так как каждое действие должно иметь только одну истинную и ясную причину, я же не нахожу другого связующего средства, то не удовлетвориться ли нам одной действующей причиной - пустотою, признав ее достаточность?"

 

Обсуждение природы пустоты и возможности ее присутствия в телах в виде своего рода пор ("мельчайших пустот") приводит Галилея к той проблеме, которая на протяжении средних веков, как правило, была связана с гипотезой о существовании пустоты, а именно к проблеме непрерывности. Ведь допущение пустот в виде мельчайших промежутков между частями тела требует обсудить вопрос о том, что такое само тело: есть ли оно нечто непрерывное или же состоит из мельчайших "неделимых" и каково, далее, число этих последних - конечное или бесконечное?

 

Вопросы эти широко дискутировались в XIII и особенно в XIV в., и в этом смысле Галилей еще не выходит за рамки средневековой науки в своей постановке этих вопросов. Но вот в решении их Галилей выступает отнюдь не как средневековый ученый. Он допускает существование "мельчайших пустот" в телах, которые и оказываются источником силы сцепления в них. Обратим внимание на интересное отличие Галилея от античных атомистов: у последних пустоты, поры в телах выступали как причина их разрушаемости, почему и надо было Демокриту предположить, что неразделимость атома обусловлена отсутствием в нем пустоты, которая разделяла бы его на части. У Галилея же, напротив, пустота выступает как сила сцепления. О силе пустоты Галилей вслед за средневековыми физиками рассуждает в понятиях Аристотеля, а не атомистов: по Аристотелю, природа "боится пустоты", чем Аристотель и объясняет целый ряд физических явлений, в том числе движение жидкости в сообщающихся сосудах и т.д. К таким же объяснениям прибегали некоторые средневековые физики. Их принимает и Галилей, когда пишет: "Если мы возьмем цилиндр воды и обнаружим в нем сопротивление его частиц разделению, то оно не может происходить от иной причины, кроме стремления не допустить образования пустоты".

 

Возможность наличия мельчайших пустот в телах Галилей доказывает сначала с помощью физического аргумента, а затем в подкрепление его обращается к аргументу философскому, а именно к вопросу о структуре континуума. К этому переходу побуждает Галилея естественный вопрос: как можно объяснить огромную силу сопротивления некоторых материалов разрыву или деформации с помощью ссылок на "мельчайшие пустоты"? Ведь, будучи мельчайшими, эти пустоты, надо полагать, дают и ничтожную величину сопротивления. Чтобы разрешить возникшее затруднение, Галилей прибегает к допущению, сыгравшему кардинальную роль в становлении науки нового времени. Он заявляет, что "хотя эти пустоты имеют ничтожную величину (заметим, что величину, хоть и ничтожную, они все же имеют. - П.Г.) и, следовательно, сопротивление каждой из них легко превозмогаемо, но неисчерпаемость их количества неисчислимо увеличивает сопротивляемость". Неисчислимость количества ничтожно малых пустот - это в сущности бесконечное множество бесконечно малых, можно сказать, пустот, а можно сказать, сил сопротивления. Потом окажется, что этот метод суммирования бесконечно большого числа бесконечно малых - неважно чего: моментов времени, частей пространства, моментов движения и т.д. - является универсальным и необычайно плодотворным инструментом мышления.

 

Чтобы понять, какую революционизирующую роль сыграл этот предложенный Галилеем метод суммирования, сравним между собой античное и средневековое понимание суммирования частей - пусть даже очень малых, но конечных - с предложенным Галилеем способом суммирования бесконечно малых "частей". В "Беседах" прежний метод излагает Сагредо, собеседник Сальвиати: "...если сопротивление не бесконечно велико, то оно может быть преодолено множеством весьма малых сил, так что большое количество муравьев могло бы вытащить на землю судно, нагруженное зерном: в самом деле, мы ежедневно наблюдаем, как муравей тащит зерно, а так как зерен в судне не бесконечное множество, но некоторое ограниченное число, то, увеличив это число даже в четыре или в шесть раз, мы все же найдем, что соответственно большое количество муравьев, принявшись за работу, может вытащить на землю и зерно, и корабль. Конечно, для того, чтобы это было возможно, необходимо, чтобы и число их было велико; мне кажется, что именно так обстоит дело и с пустотами, держащими связанными частицы металла.

 

Сальвиати. Но если бы понадобилось, чтобы число их было бесконечным, то сочли бы вы это невозможным?

 

Сагредо. Нет, не счел бы, если бы масса металла была бесконечной; в противном случае...".

 

Ясно, что хотел сказать Сагредо: в противном случае мы окажемся перед парадоксом, восходящим еще к Зенону: как бы малы ни были составляющие элементы, но если они имеют конечную величину, то бесконечное их число в сумме даст и бесконечную же величину - неважно, идет ли речь о массе металла, длине линии или величине скорости. На этом принципе стоит как математика греков, так и их физика: ни та, ни другая не имеют дела с актуальными бесконечностями - будь то бесконечно большие величины или же бесконечно малые. Приведенный Сагредо пример с муравьями - лишь специальная формулировка той самой аксиомы непрерывности Архимеда или аксиомы Евдокса, которая устанавливает, какого рода величины могут находиться между собой в отношении и что это значит - находиться в отношении.

 

Именно эту аксиому хочет оспорить Галилей. Вот что отвечает Сальвиати -Галилей задумавшемуся Сагредо: "В противном случае - что же? Раз мы уже дошли до парадоксов, то попробуем, нельзя ли каким-либо образом доказать, что в некоторой конечной непрерывной величине может существовать бесконечное множество пустот". Как видим, Галилей хочет доказать, что конечная величина может представлять собой сумму бесконечного числа - нельзя сказать, что величин, скажем пока - элементов, в данном случае - "пустот". В доказательство своего парадоксального утверждения Галилей обращается к знаменитому "колесу Аристотеля" - задаче, которой много занимались средневековые ученые и суть которой сформулирована в работе псевдо-Аристотеля "Механические проблемы". В средневековой механике эта задача формулируется в виде вопроса, почему при совместном качении двух концентрических кругов больший проходит такое же расстояние, как и меньший, в то время как при независимом движении этих двух кругов пройденные ими расстояния относились бы как их радиусы. Галилей решает парадокс "аристотелева колеса" совсем не так, как это делал автор "Механических проблем".

 

Чтобы решить задачу о качении концентрических кругов, Галилей начинает с допущения, которое ему позволяет сделать затем "предельный переход", играющий принципиально важную роль в его доказательстве: он рассматривает сначала качение равносторонних и равноугольных концентрических многоугольников. При качении большего многоугольника должен двигаться также и вписанный в него меньший; при этом, как доказывает Галилей, меньший многоугольник пройдет пространство, почти равное пройденному большим, "если включить в пространство, пройденное меньшим, также и интервалы под дугами, не затронутые на самом деле никакой частью периметра меньшего многоугольника". При качении меньшего многоугольника, как показывает Галилей, происходят "скачки", как бы "пустые промежутки", число которых будет равно числу сторон обоих многоугольников. При возрастании числа сторон многоугольников размеры пустых промежутков уменьшаются пропорционально увеличению числа сторон. Однако пока многоугольник остается самим собой, то, как бы ни возрастало число его сторон, они остаются все же конечной величиной, а потому и число пустых промежутков будет как угодно большим, но конечным числом.

 

Но если мы рассмотрим случай предельного перехода, когда многоугольник превращается в круг, то дело существенно меняется. "...Как в многоугольнике со ста тысячами сторон путь, пройденный при обороте, измеряется обводом большего многоугольника, то есть отложением без перерыва всех его сторон, в то время как путь меньшего многоугольника также равен ста тысячам его сторон с прибавлением такого же числа, то есть ста тысяч пустых промежутков, так и в кругах (представляющих собою многоугольники с бесконечно большим числом сторон) линия, образуемая непрерывным наложением бесконечно большого числа сторон большого круга, приблизительно равна по длине линии, образованной наложением бесконечно большого числа сторон меньшего круга, если включить в нее и промежутки; а так как число сторон не ограниченно, а бесконечно, то и число промежутков между ними также бесконечно; бесчисленные точки в одном случае заняты все, в другом случае часть их занята, а часть пуста".

 

Здесь Галилей делает одно допущение, на котором уже и держится все последующее его доказательство, а именно что круг представляет собой многоугольник с бесконечно большим числом сторон. Такое допущение не принималось математиками ни в античности, ни в средние века, оно дозволялось только в логистике для упрощения расчетов, которые всегда принимались как приблизительные. Допущение предельного перехода многоугольника с как угодно большим, но конечным числом сторон в фигуру другого рода - круг - позволяет Галилею ввести в оборот понятие актуальной бесконечности, вместе с которым в научное построение проникают парадоксы - и на этих-то парадоксах, которые прежде в математику пытались не впускать, как раз и работает та новая ветвь математики, которая во времена Галилея носит название "математики неделимых", а впоследствии получает название исчисления бесконечно малых. В "Беседах" Галилея мы наглядно можем видеть, как формируется методологический базис этой новой математики, возникшей вместе с механикой нового времени как ее математический фундамент.

 

Весь парадокс теперь сосредоточивается в понятии "пустых точек", которые представляют собой промежутки, лишенные величины. Введение этих "пустых точек" служит для Галилея средством преодоления противоположности непрерывного и дискретного - противоположности, которую считал принципиальной для науки Аристотель и на которой базируется его физика и философия в той же мере, в какой и математика Евклида.

 

Насколько эта противоположность была принципиальна также и для средневековой науки, свидетельствует, в частности, трактат Брадвардина о континууме, где показано, к каким парадоксам и противоречиям приводит попытка составления континуума из неделимых (т.е. из точек).

 

Галилей показывает, какие новые возможности открываются перед научным мышлением, если принять понятие актуальной бесконечности. "...Разделяя линию на некоторые конечные и потому поддающиеся счету части, нельзя получить путем соединения этих частей линии, превышающей по длине первоначальную, не вставляя пустых пространств между ее частями; но, представляя себе линию, разделенную на неконечные части, то есть на бесконечно многие ее неделимые, мы можем мыслить ее колоссально растянутой без вставки конечных пустых пространств, а путем вставки бесконечно многих неделимых пустот".

 

Таким путем вводит Галилей чрезвычайно важное для науки XVII-XVIII вв. понятие неделимого, вызвавшее серьезную и очень плодотворную дискуссию между математиками, философами, физиками на протяжении более чем двухсот лет. Как видим, это новое понятие вводится с помощью математического доказательства и базируется на приеме, введенном в философское мышление Николаем Кузанским, - на приеме предельного перехода, представляющем собой как бы псевдонаглядную демонстрацию принципа совпадения противоположностей. Именно псевдонаглядную, потому что не только нашему наглядному представлению, но даже нашему мышлению не под силу понять совпадение противоположностей, о котором ведут речь и Кузанец, и Галилей.

 

Заметим, как называет Галилей это новорожденное понятие-парадокс. Он дает ему несколько имен, каждое из которых несет на себе след того приема мысли, с помощью которого это понятие появилось на свет: "пустые точки", "неделимые пустоты", "неконечные части линии" и, наконец, просто "неделимые", или "атомы".

 

Вот тут, на исходе XVI в., впервые действительно появляются те самые "математические атомы", или "амеры", которые С.Я. Лурье нашел у Галилея и его ученика Кавальери и попытался - но без достаточных доказательств - обнаружить также и у Демокрита. К такому сопоставлению С.Я. Лурье побудили, вероятно, некоторые высказывания того же Галилея.

 

Получив понятие "неделимое" в рамках математического рассуждения, Галилей, однако же, показывает, что это понятие вполне работает также и в физике, более того, как мы помним, даже и математическое доказательство было предпринято им с целью найти средства для решения физической проблемы связности тел. "То, что я сказал о простых линиях, - пишет Галилей, - относится также и к поверхностям твердых тел, если рассматривать их как состоящие из бесконечного множества атомов. Если мы разделим тело на конечное число частей, то, без сомнения, не сможем получить из них тела, которое занимало бы объем, превышающий первоначальный, без того, чтобы между частями не образовалось пустого пространства, то есть такого, которое не заполнено веществом данного тела; но если допустить предельное и крайнее разложение тела на лишенные величины и бесчисленные первичные составляющие, то можно представить себе такие составляющие растянутыми на огромное пространство путем включения не конечных пустых пространств, а только бесконечно многих пустот, лишенных величины. И таким образом допустимо, например, растянуть маленький золотой шарик на весьма большой объем, не допуская конечных пустот, - во всяком случае, если мы принимаем, что золото состоит из бесконечно многих неделимых".

 

Не удивительно, что понятие "неделимое", или "бесконечно малое", на протяжении многих десятилетий отвергалось большим числом математиков и вызывало множество споров у физиков. Ведь в сущности Галилей в приведенном выше отрывке узаконивает апорию Зенона, служившую для элеатов средством доказательства того, что актуально бесконечное множество вообще не может быть мыслимо без противоречия, превращая ее из орудия разрушения в орудие созидания, но не снимая при этом противоречия, а пользуясь им как инструментом позитивной науки. В самом деле, Галилей утверждает, что из лишенных величины элементов (т.е. элементов, строго говоря, бестелесных, ибо тело - пусть самое наименьшее - всегда имеет величину) можно составить как угодно большое тело при условии, что этих лишенных величины составляющих будет бесконечное множество. Таким образом, одно непонятное - лишенную величины составляющую часть тела - Галилей хочет сделать инструментом познания с помощью другого непонятного - актуально существующего бесконечного числа, которого не принимала ни античная, ни средневековая математика. Последняя, правда, в лице некоторых своих теоретиков, как, например, Гроссетеста, признавала актуально бесконечное число, но оговаривала, что оно доступно лишь Богу, а человеческий разум оперировать этим понятием не в состоянии.

Информация о работе История новоевропейской философии в ее связи с наукой