Автор работы: Пользователь скрыл имя, 29 Октября 2013 в 00:26, лекция
В молекулах всех природных аминокислот ( за исключением глицина) у a-углеродного атома все четыре валентные связи заняты различными заместителями, такой атом углерода является асимметрическим, и получил название хирального атома. Вследствие этого растворы аминокислот обладают оптической активностью – вращают плоскость плоскополяризованного света. Причем, при прохождении через них поляризованного луча происходит поворот плоскости поляризации либо в право (+), либо влево (–). По расположению атомов и атомных группировок в пространстве относительно асимметрического атома различают L- и D-стереоизомеры аминокислот. Знак и величина оптического вращения зависят от природы боковой цепи аминокислот (R-группы).
Ниже изображены короткие структурные фрагменты цепей РНК и ДНК, позволяющие представить соединение отдельных нуклеотидов в цепи.
фрагмент РНК
У полинуклеотида имеется 5/-конец со свободной фосфатной группой и 3/-конец со свободной ОН-группой. Фосфатные группы в этих цепях обладают сильнокислотными свойствами. При рН~7 фосфатная группа ионизирована полностью, поэтому в естественных условиях нуклеиновые кислоты существуют в виде полианинов (несут множество отрицательных зарядов).
Нуклеиновые кислоты отличаются друг от друга числом мононуклеотидных остатков в молекуле, нуклеотидным составом и порядком чередования нуклеитидных остатков, фактически оснований, поскольку пентозофосфатные части у всех мономеров одинаковы. Для краткого изображения первичной структуры нуклеиновых кислот пользуются однобуквенными символами нуклеозидов.
Поэтому первичная структура фрагмента РНК может быть представлена такой записью UAГААСС×××××××× Запись структуры ДНК отличается приставкой « g» ( дезокси-);
g (ТСАГТГ –)-эти две записи, помимо символа «g» различаются еще тем, что в первой (РНК) не встречается символ Т ( тимин), а во второй (ДНК) не встречается символ U (урацил).
Таким образом, полинуклеотид записывается как последовательный набор конкретных нуклеотидных остатков от 5/-конца к 3/-концу.
Нуклеотидный состав ДНК (независимо
от источников ее выделения) имеет общие
закономерности, которые известны как
правила Чаргаффа (по имени ученого,
сформулировавшего эти правила)
1. Число пуриновых оснований (А+G) равно числу пиримидиновых оснований ( Т+С), т. е. отношение пуринов к пиримидинам равно единице.
2. Число остатков аденина равно числу остатков тимина, т.е. отношение аденина к тимину равно единице (А/Т = 1,0)
Эти количественные соотношения были подтверждены исследованиями других ученых и стали важной предпосылкой при установлении трехмерной структуры ДНК и помогли понять каким образом генетическая информация кодируется в ДНК и передается от одного поколения к другому.
Базируясь на данных рентгеноструктурного анализа и правилах Чаргаффа Дж. Уотсон и Ф. Крик в 1953г. предложили следующую модель строения ДНК. Согласно этой модели, молекула ДНК состоит из двух полинуклеотидных антипараллельных цепей (5/®3/)(3/®5/) спирально право-закрученных одна относительно другой таким образом, что углеводнофосфатная цепь находится снаружи, а пуриновые и пиримидиновые основания внутри перпендикулярно центральной оси схема ДНК. Эти две цепи соединяются между собой водородными связями, возникающими между пуриновыми и пиримидиновыми основаниями отдельных нуклеотидов, образуя специфические пары.
Тимин связан тремя водородными связями с аденином ТºА, цитозин двумя водородными связями с гуанином G = С. Эти пары оснований называются комплементарными парами оснований. Благодаря этому нуклеотидная последовательность одной цепи полностью комплементарна последовательности другой.
Парные основания могут охватывать миллионы оснований в ДНК. Это возможно только тогда, когда полярность обоих нитей различна, т.е, когда нити имеют различное направление (различную ориентацию). Кроме того, обе нити должны быть скручены друг вокруг друга в виде двойной спирали. РНК не может образовывать из-за стерических помех, благодаря 2/ - ОН групп рибозных остатков, подобную двойную спираль. Поэтому в РНК попарное соединение азотистых оснований находят только в пределах коротких участков одной и той же нити, и структура в целом менее регулярна, чем для ДНК.
Рисунок 4 – Схема образования водородных связей между комплементарными азотистыми основаниями
Рисунок 5 – Схематическое изображение двойной спирали ДНК
Водородные связи между парами оснований – не единственный вид взаимодействий, стабилизирующих двухцепочечную структуру. Молекула ДНК – полианион, и на ее поверхности локализовано множество отрицательных зарядов, что обеспечивает стабилизацию путем электростатических взаимодействий с неорганическими противоионами, например с Mg+2 ,или белками, содержащими большое количество положительно заряженных боковых цепей аминокислот – гистонами. Третий стабилизирующий фактор возникает благодаря гидрофобным взаимодействиям между азотистыми основаниями, которые уложены стопкой внутри спирали. Между нитями по всей длине ДНК лежат углубления – маленькая и большая бороздки.
Так как обе нити удерживаются вместе благодаря нековалентным
взаимодействиям, то двойную спираль можно
разделить нагреванием (денатурацией)
на одиночные нити (рисунок 5). При медленном
охлаждении структура двойной спирали
снова восстанавливается. Денатурация
ДНК играет важную роль в генной инженерии.
В зависимости от рН среды, ионной силы
раствора, концентрации воды и т.п. конфигурация
двойной спирали может меняться. Методами
рентгеноструктурного анализа доказано
существование более десяти форм ДНК,
которые различаются количеством пар
оснований приходящихся на один виток,
углом наклона оснований к вертикальной
оси. Наиболее изучены А-, В-, С- и Т-формы
ДНК. Предполагают, что каждая форма ДНК
приспособлена для выполнения определенной
биологической функции. А-форма ДНК с передачей
информации от ДНК к РНК,
В-форма – с биосинтезом ДНК и С-форма
с хранением, упаковкой ДНК.
Рисунок 6 – разделение двойной спирали ДНК на одиночные нити
В последние годы появились
данные о возможности существования ле
ДНК обладает специфической третичной структурой. Двухцепочечная спираль ДНК на отдльных участках может подвергаться дальнейшей укладке в суперспираль. Может приобретать кольцевую форму, или свертываться в клубок. Суперскрученная структура обеспечивает экономную упаковку огромной молекулы ДНК в хромосоме. Суперспирали соединяются с белками (гистонами), упакованными в бороздах, обеспечивая тем самым стабильность третичной структуры ДНК.
В клетках любых биологических объектов содержаться три основных вида РНК: рибосомальная РНК(рРНК), транспортная РНК(тРНК) и информационная или матричная РНК(мРНК). Они являются одноцепочечными молекулами различной длины, различаются по локализации, свойствам, строении., функциям. В большинстве клеток содержание РНК в 5-10 раз превышает содержание ДНК. Основная часть РНК клетки–70-80% приходится на долю рРНК, которая содержится в рибосомах-внутриклеточных частицах, принимающих участие в биосинтезе белка рРНК образует каркас, к которому прикрепляются белки, образуя плотноупакованный рибонуклеопротеин. Нуклеотидный состав рРНК из разных источников сходен.
Существование матричной или информативной РНК (РНК-посредника передачи информации от ДНК в белоксинтезирующий аппарат клетки) было предсказано в 1957г., а выделена мРНК в 1962г. Содержание матричной РНК в клетке от 3% до 7% от общей суммы содержания РНК. Строение матричной РНК несколько специфично. В ее составе есть информативные участки, т.е. работающие как матрицы в процессе биосинтеза белка и неинформативные зоны. Предполагается, что неинформативные участки являются акцепторными при взаимодействии матричной РНК с рибосомой или отдельными белковыми факторами.
На 5/-конце молекулы РНК имеется участок, содержащий минорные нуклеотиды. Это часть так же неинформативна и называется «шапочка» или «кэп». Предполагают, что «кэп» защищает мРНК от разрушительного действия ферментов экзонуклеаз. На 3/-конце мРНК находится участок, содержащий от 50 до 400 остатков аденозинмонофосфата. Предполагают, что полиадениловый участок определяет время жизни мРНК, а так же участвует в процессе созревания и переноса м РНК из ядра в цитоплазму.
Название матричной
РНК связано с функцией, которую
она выполняет. Она служит матрицей,
на которой синтезируется
Содержание транспортной РНК 10% от общего содержания РНК, это самые малые по размеру молекулы РНК. Транспортная РНК не связана с клеточными структурами и находится в клетке в растворенном виде. Ее функция состоит в переносе, транспорте аминокислот к месту белкового синтеза – в рибосомы. Каждая тРНК переносит определенную аминокислоту. тРНК богаты минорными нуклеотидами.
Молекулы РНК, в отличие от молекул ДНК построены из одной нуклеотидной цепи, однако в этой цепи имеются комплементарные друг другу участки, которые могут взаимодействовать, образуя двойные спирали. При этом соединяются следующие нуклеотидные пары: Аденин-Урацил, Гуанин-Цитозин. Такие спирализованные участки (шпильки) обычно содержат небольшое число нуклеотидных пар и чередуются с неспаренными участками. Характерную вторичную структуру имеет транспортная РНК. Она имеет 4 спирализованные участка, и на плоскости эта структура напоминает фигуру клеверного листа. Кроме этого, имеется участок, содержащий нуклеотид комплементарный кодону матричной РНК, он называется антикодоном. С его помощью транспортная РНК прикрепляется к кодону матричной РНК. Имеется конец, который содержит остаток аденозинмонофосфата, к которому присоединяется соответствующая аминокислота. Третичная структура всех транспортных РНК схожа. Это позволяет всем им взаимодействовать с рибосомой. Незначительные отличия в пространственной структуре позволяет им взаимодействовать со специфическими ферментами тРНК синтезами, участвующими в биосинтезе белка. Третичная структура других видов РНК пока точно не установлена.
БИОЛОГИЧЕСКАЯ ХИМИЯ
Конспект лекций
для студентов специальностей
49 01 01, 49 01 02, 91 01 01
БЕЛКИ
И НУКЛЕИНОВЫЕ КИСЛОТЫ
Составитель доцент Макасеева Ольга Николаевна
Оформление доцент Баранов Олег Матвеевич
графического материала
Редактор Бажанова Т.Л.
Технический редактор Щербакова А.А.
Подписано в печать __________ Формат 60´84
Печать офсетная. Усл. печ. л. ______ Уч.-изд. л. ______
Тираж ______ Экз. ______ Заказ ______ Бесплатно
Лицензия предприятия № 226 от 12.02.2003 г. ЛИ №604 от 03.06.2003 г.
Отпечатано на ризографе МГУП
212027, г. Могилев, пр. Шмидта, 3