Мышьяк

Автор работы: Пользователь скрыл имя, 17 Июня 2013 в 00:35, лекция

Краткое описание

Мышьяк как элемент в чистом виде ядовит только в высоких концентрациях. Он принадлежит к тем микроэлементам, необходимость которых для жизнедеятельности организма человека не доказана, за исключением его стимулирующего действия на процесс кроветворения. Соединения же мышьяка, такие как мышьяковистый ангидрид, арсениты и арсенаты, сильно токсичны.
Мышьяк содержится во всех объектах биосферы (в земной коре – 2 мг/кг, в морской воде – 5 мкг/кг).
Известными источниками загрязнения окружающей среды мышьяком являются электростанции, использующие бурый уголь, медеплавильные заводы. Мышьяк используется при производстве полупроводников, стекла, красителей, инсектицидов, фунгицидов и т.д

Вложенные файлы: 1 файл

Безопасность .doc

— 273.50 Кб (Скачать файл)

I этап можно назвать физическим. На этом этапе происходит ионизация и возбуждение макромолекул; при этом поглощенная энергия реализуется в слабых местах (в белках – SH-группы, в ДНК – хромофорные группы тимина, в липидах – ненасыщенные связи).

II этап – химические преобразования. На этом этапе происходит взаимодействие радикалов белков, нуклеиновых кислот, липидов с водой, кислородом, с радикалами воды и т.п. Это в свою очередь приводит к образованию гидроперекисей, ускоряет процесс окисления, вызывает множественные изменения молекул. В результате этого начальный эффект многократно усиливается. Разрушается структура биологических мембран, усиливаются другие процессы деструкции, высвобождаются ферменты, наблюдается изменение их активности.

III этап – биохимический. На этом этапе происходят нарушения, которые связаны с высвобождением ферментов и  изменением их активности. Различные ферментные системы реагируют на облучение неоднозначно. Активность одних ферментов после облучения возрастает, других – снижается, третьих – остается неизменной. К числу наиболее радиочувствительных процессов в клетке относится окислительное фосфорилирование. Нарушение этого процесса отмечается через 20-30 минут при дозе облучения 100 рад. Оно проявляется в повреждении системы генерирования АТФ, без которой не обходится на один процесс жизнедеятельности.

Высокой чувствительностью  обладают ДНК-комплексы (ДНК клеточного ядра в комплексе со щелочными  белками, РНК, ферментами). Предполагается, что в этом случае в первую очередь поражаются связи белок – белок и белок – ДНК.

Облучение целостного организма приводит к снижению гликогена в скелетных мышцах, печени и ряде других тканей в результате нейрогуморальной реакции на облучение. Кроме этого обнаруживаются нарушения процессов распада глюкозы и высокополимерных полисахаридов.

При действии ионизирующих излучений на липиды происходит образование перекисей.

В организме при его  облучении наблюдается снижение общего содержания липидов, их перераспределение  между различными тканями с увеличением уровня в крови и печени. Кроме того, наблюдается угнетение ряда антиоксидантов, что в свою очередь, также способствует образованию токсичных гидроперекисей.

По характеру распределения  в организме человека радиоактивные  вещества можно условно разделить на следующие три группы.

    1. Отлагающиеся преимущественно в скелете (так называемые остеотропные изотопы – стронций, барий, радий и другие).
    2. Концентрирующиеся в печени (церий, лантан, плутоний и др.).
    3. Равномерно распределяющиеся по системам (водород, углерод, инертные газы, железо и другие). Причем одни имеют тенденцию к накоплению в мышцах (калий, рубидий, цезий), а другие – в селезенке, лимфатических узлах, надпочечниках (ниобий, рутений).

Особое место занимает радиоактивный йод – он селективно аккумулируется щитовидной железой.

Если принять в качестве критерия чувствительности к тонизирующему излучению морфологические изменения, то клетки и ткани организма человека по степени возрастания чувствительности можно расположить в следующем порядке: нервная ткань, хрящевая и костная ткани, мышечная ткань, соединительная ткань, щитовидная железа, пищеварительные органы, легкие, кожа, слизистые оболочки, половые железы, лимфоидная ткань, костный мозг.

Из вышесказанного вытекают следующие направления по профилактике радиоактивного загрязнения окружающей среды:

    • охрана атмосферы Земли как природного экрана, предохраняющего от губительного космического воздействия радиоактивных частиц;
    • соблюдение глобальной техники безопасности при добыче, использовании и хранении радиоактивных элементов, применяемых человеком в процессе его жизнедеятельности.

Важнейшим фактором предотвращения накопления радионуклидов в организме людей является питание. Это и употребление в пищу определенных продуктов и их отдельных компонентов. Особенно это касается защиты организма от долгоживущих радионуклидов, которые способны мигрировать по пищевым цепям, накапливаться в органах и тканях, подвергать хроническому облучению костный мозг, костную ткань и т.п.

Установлено, что обогащение рациона рыбой, кальцием, фтором, витаминами А, Е, С, которые являются антиоксидантами, а также неусвояемыми углеводами (пектин) способствует снижению риска онкологических заболеваний, играет большую роль в профилактике радиоактивного воздействия наряду с радиопротекторами, к которым относятся вещества различной химической природы, в том числе и серосодержащие соединения, также как цистеин и глутатион.

Метаболизм  чужеродных соединений

 

Механизм детоксикации ксенобиотиков  – две фазы. Изучение метаболизма чужеродных соединений, превращений, которые они претерпевают, попадая в организм человека, важны, в первую очередь, с точки зрения выяснения химических и биохимических механизмов детоксикации, а также с точки зрения оценки возможностей защитной системы организма по детоксикации чужеродных веществ.

Метаболизм чужеродных соединений в организме будет зависеть от множества различных факторов.

Путь ксенобиотика, его  воздействие и ответную реакцию  организма можно представить  в виде схемы (рис. 2).


 

 

 

 

 


 

 



 

 

 

Рис. Путь и воздействие  ксенобиотика в организме человека

 

Попадая в организм, определенная доза вещества всасывается в месте  контакта, разносится и распределяется в крови и органах. Вследствие метаболистических изменений и  ритмического протекания процессов  детоксикации уровень его содержания падает. В тканях и клетках ксенобиотик проходит через одну или несколько мембран, взаимодействуя с рецепторами. В результате возникает ответная реакция, включаются механизмы противодействия с целью поддержания постоянства внутренней среды – гомеостаза.

Метаболизм ксенобиотиков протекает в виде двухфазного процесса:

1-ая фаза – метаболистические  превращения;

2-ая фаза – реакция  конъюгации.

1-ая фаза (метаболистические  превращения) - связана с реакциями окисления, восстановления, гидролиза и протекает при участии ферментов, главным образом, в эндоплазматическом ретикулуме печени и реже -–других органов (надпочечниках, почках, кишечнике, легких и т.д.).

Окисление. В осуществлении реакций окисления решающее значение имеют микросомальные ферменты печени. Окислительная система состоит из системы цитохрома Р-450, а также НАДФН-и НАДН-зависимых редуктаз.

Микросомальные ферменты катализируют не только окисление жирных кислот, гидроксилирование стероидов, окисление терпенов и алкалоидов, но и окисление различных лекарств, пестицидов, канцерогенных ПАУ и других ксенобиотиков.

Такое многообразие субстратов, на которое воздействует цитохром Р-450, является следствием множественных  форм фермента, число которых достигает  сотни. В ответ на воздействие  различных ксенобиотиков в печени и других органах происходит индукция синтеза тех изоформ цитохрома Р-450, которые метаболизируют данные токсиканты, что эквивалентно реакции иммунной системы организма на воздействие чужеродных белков. Поэтому весь спектр этих ферментов обозначают как генное суперсемейство цитохрома Р-450, для которого была предложена специальная номенклатура. Например: цитохрома  Р-450 1А1 и 1А2 – метаболизируют полиароматические углеводороды (1-я арабская цифра обозначает генное семейство, латинская буква – генное подсемейсто, 2-я цифра – конкретный фермент); цитохром Р-450 3А4 – афлатоксин В, цитохром Р-450 2Е1 – метаболизируют нитрозоамины и т.п.

Восстановление. Чаще всего имеют место реакции восстановления нитро- и азосоединений в амины, восстановление кетонов во вторичные спирты.

Гидролиз. Речь идет, главным образом, о гидролизе сложных эфиров и амидов, с последующей деэтерификацией и дезаминированием.

2-я фаза (реакции  конъюгации) – это реакции, приводящие к детоксикации. Наиболее важные из них – это реакции связывания активных –ОН,  –NH2,  –СООН и -SH – групп и метаболита первичного ксенобиотика. Интересно, что некоторые ксенобиотики, в частности лекарственные средства, могут стимулировать активность ферментов, участвующих в метаболизме различных веществ (не только собственном). Такая ферментативная индукция может считаться выгодной, т.к. метаболизм и выведение токсических веществ ускоряется, если только промежуточные метаболиты не окажутся более токсичными, чем исходные вещества.

Факторы, влияющие на метаболизм чужеродных соединений. Чужеродные соединения обычно метаболизируются различными путями, образуя множество метаболитов. Скорость и направление этих реакций зависят от многих факторов, результатом действия которых могут быть изменения в картине метаболизма и, как следствие, возникают различия в токсичности.

Эти факторы по своему происхождению можно разделить  на:

а) генетические (генетически обусловленные дефекты ферментов, участвующие в метаболизме чужеродных соединений);

б) физиологические (возраст, пол, состояние питания, наличие различных заболеваний);

в) факторы окружающей среды (облучение ионизирующей радиацией, стресс из-за неблагоприятных условий, наличие других ксенобиотиков).

Очень важно для процессов  детоксикации, чтобы обе фазы детоксикации функционировали согласованно, с некоторым доминированием реакций конъюгации, особенно, если на первой стадии в результате метаболистических превращений из первоначальных ксенобиотиков образуются вещества с выраженной токсичностью.

Принципиально важное значение для нормального функционирования обеих фаз детоксикации имеет и соответствующий уровень эффективности антиоксидантной системы клетки, что определяется активностью антиоксидазных ферментов и уровнем низкомолекулярных антиоксидантов: токоферолов, биофлавоноидов, витамина С и др.; поскольку хорошо известно, что функционирование системы цитохрома Р-450 связано с образованием активных форм кислорода: оксидрадикала, Н2О2, которые вызывают деструкцию мембран, в том числе мембран эндоплазматического ретикулума, и, тем самым, способны подавлять активность цитохром Р-450 – зависимых ферментов и частично ферментов конъюгации, которые встроены в мембраны и активность которых связана с мембранным окружением.

Таким образом, антиоксидазная система функционирует как еще  одна важная система детоксикации, обеспечивающая защиту организма от агрессивных органических свободных радикалов, перекисных производных, которые так же являются опасными факторами онкогенности, как и рассматриваемые экзогенные токсиканты.

 

Антиалиментарные  факторы питания 

 

Помимо чужеродных соединений, загрязняющих пищевые продукты, так называемых контаминантов – загрязнителей, и природных токсикантов, необходимо учитывать действие веществ, не обладающих общей токсичностью но способных избирательно ухудшать или блокировать усвоение нутриентов. Эти соединения принято называть антиалиментарными факторами питания.

Этот термин распространяется только на вещества природного происхождения, которые являются составными частями натуральных продуктов питания.

Перечень антиалиментарных факторов питания, достаточно обширен. Рассмотрим некоторые из них.

Ингибиторы  пищеварительных ферментов. К этой группе относятся вещества белковой природы, блокирующие активность пищеварительных ферментов (пепсин, трипсин, химотрипсин, a-амилаза). Белковые ингибиторы обнаружены в семенах бобовых культур (соя, фасоль и др.), злаковых (пшеница, ячмень и др.), в картофеле, яичном белке и др. продуктах растительного и животного происхождения.

Механизм действия этих соединений заключается в образовании  стойких комплексов «фермент-ингибитор», подавлении активности главных пищеварительных ферментов и тем самым, снижении усвояемости белковых веществ и других макронутриентов.

К настоящему времени  белковые ингибиторы достаточно хорошо изучены и подробно охарактеризованы: расшифрована первичная структура, изучено строение активных центров ингибиторов, исследован механизм действия ингибиторов и т.п.

На основании структурного сходства все белки-ингибиторы растительного  происхождения можно разделить  на несколько групп, основными из которых являются следующие:

    1. Семейство соевого ингибитора трипсина (ингибитора Кунитца);
    2. Семейство соевого ингибитора Баумана-Бирка;
    3. Семейство картофельного ингибитора I;
    4. Семейство картофельного ингибитора II;
    5. Семейство ингибиторов трипсина a-амилазы.

Ингибитор Кунитца и  ингибитор Баумана-Бирка были выделены из семян сои. Эти ингибиторы подавляют  активность трипсина и химотрипсина.

В клубнях картофеля  содержится целый набор ингибиторов  химотрипсина и трипсина, которые  отличаются по своим физико-химическим свойствам: молекулярной массе, особенностям аминокислотного состава, изоэлектрическим точкам, термо- и рН-стабильности и т.п. Кроме картофеля, белковые ингибиторы обнаружены в других пасленовых, а именно – в томатах, баклажанах, табаке. Наряду с ингибиторами сериновых протеиназ в них обнаружены и белковые ингибиторы цистеиновых, аспартильных протеиназ, а также металлоэкзопептидаз.

Эти белковые ингибиторы растительного происхождения характеризуются высокой термостабильностью, что в целом не характерно для веществ белковой природы. Например, полное разрушение соевого ингибитора трипсина достигается лишь 20 минутным автоклавированием при 115°С, или кипячением соевых бобов в течение 2-3 часов. Из этого следует, что употребление семян бобовых культур, особенно богатых белковыми ингибиторами пищеварительных ферментов, как для корма сельскохозяйственных животных, так и в пищевом рационе человека, возможно лишь после соответствующей тепловой обработки.

Информация о работе Мышьяк