Автор работы: Пользователь скрыл имя, 27 Декабря 2011 в 04:24, курсовая работа
Реальные условия функционирования предприятия обуславливают необходимость проведения объективного и всестороннего финансово-производственного анализа хозяйственных операций, который позволяет сделать выводы о его деятельности. В условиях рыночной экономики субъекты хозяйственной деятельности прибегают к анализу финансового состояния предприятий периодически в процессе регулирования, контроля, наблюдения за состоянием и работой предприятий, составления бизнес-планов и программ, а также в особых ситуациях.
Анализ финансов и хозяйственной деятельности предприятий связан с обработкой обширной информации, характеризующей самые разнообразные аспекты функционирования предприятия как производственного, финансового, имущественного, социального комплекса. Также, анализ финансового положения предприятия позволяет отследить тенденции его развития, дать комплексную оценку хозяйственной, коммерческой деятельности и служит, таким образом, связующим звеном между выработкой управленческих решений и собственно производственно-предпринимательской деятельностью.
Введение........................................................................................................... 5
Глава 1. Теоретические основы эконометрического прогнозирова-ния...................................................................................................... 7
1.1 Трендовые модели................................................................................ 7
1.2 Тренды................................................................................................... 8
1.3 Корреляционный анализ...................................................................... 11
Выводы.............................................................................................................. 15
Глава 2. Практическое применение моделей прогнозирования.......... 16
2.1 Расчет исходных данных........................................................................ 16
2.2 Определение средней арифметической................................................ 17
2.3 Трендовые модели.................................................................................. 18
2.3.1 Трендовые модели с линейной выравнивающей функцией................................................................................................................... 18
2.3.2 Метод расчленения исходных данных динамического ряда............................................................................................. 18
2.3.3 Выравнивание методом наименьших квадратов..................... 20
2.3.4 Выравнивание методом наименьших квадратов с переносом начала координат в середину динамического ряда............................................................................................ 21
2.3.5 Трендовые модели с квадратичной выравнивающей функцией.................................................................................. 23
2.3.6 Определение коэффициентов вариации трендовых моделей..................................................................................... 24
2.3.7 Интерполяция и экстраполяция по трендовой модели......... 26
2.4 Корреляционные модели....................................................................... 27
2.4.1 Корреляционная модель производственного процесса.......... 27
2.4.2 Линейная корреляционная модель........................................... 27
2.4.3 Выравнивание квадратичной функцией................................. 28
2.4.4 Коэффициент корреляции конкурирующих описаний......... 31
2.4.5 Использование модели в оптимизационной задаче.............. 32
2.5 Графическое изображение результатов расчета по различным кон¬курирующим моделям........................................ .................................. 33
Выводы......................................... ......................................... ......................... 34
Заключение......................................... ........................................................... 36
Список используемых источников............................................................ 37
Глава 1. Теоретические основы эконометрического прогнозирования
1.1 Трендовые модели
Методология
статистического и
Трендовая модель – зависимость показателя от времени на основе наиболее подходящей функции. Данные модели предполагают выделение во временном ряде тренда, сезонной компоненты, циклической компоненты и случайной (непрогнозируемой) составляющей.
Виды трендовых моделей:
- линейная модель (графическое изображение модели представлено на рис. 1)
Рис. 1 – Линейная трендовая модель
- экспоненциальная модель: (графическое изображение модели представлено на рис. 2)
Рис. 2 – экспоненциальная трендовая модель
- логистическая модель: (графическое изображение модели представлено на рис. 3)
Рис. 3
– логистическая трендовая модель
- Кластерная модель: (графическое изображение модели представлено на рис. 4)
Кластерная
модель – группировка объектов по
похожести их свойств.
Рис. 4 –
Кластерная трендовая модель
1.2 Тренды
Основным положением технического анализа выступает утверждение о том, что рынок развивается направленно: либо цены растут, либо падают, либо находятся в горизонтальном диапазоне. Поэтому выявление тренда (trend), или превалирующего направления движения цен, - база технического анализа и залог успешной торговли.
Тренд – медленно меняющаяся компонента временного ряда, которая описывает влияние на временной ряд долговременно действующих факторов, вызывающих плавные и длительные изменения ряда.
Cуществует три вида трендов:
1) Восходящий или «бычий» тренд характеризуется тем, что нижние цены колебаний рынка повышаются. Линия, ограничивающая такой тренд снизу и проходящая через минимальные значения, как уже было отмечено, называется линией тренда (линией поддержки). При возрастающем тренде нам важно иметь границу именно снизу, т.к. в этом случае делаются ставки на повышение цены. Линия поддержки соединяет важные минимумы (низы рынка). Продавцы являются активными игроками на рынке, которые выталкивают цену вниз а покупатели при этом – обороняющаяся сторона. Чем активнее будут продавцы и чем пассивнее покупатели, тем выше вероятность того, что уровень линии поддержки будет пробит и цена пойдет дальше вниз.
2) Убывающий или «медвежий» тренд возникает тогда, когда максимальные цены колебаний рынка понижаются. При убывающем тренде нас интересует линия тренда, которая ограничивает цены сверху и также называется линией сопротивления. Она возникает в момент, когда покупатели больше не могут, либо не хотят покупать данный товар по более высоким ценам. Пересечение, или пробитие линий сопротивления, предупреждает о возможности ослабления тренда или даже его смене. Если «быки» соберутся с силами или «медведи» ослабят свою хватку, то цена скорее всего пробьет установленный ранее уровень сопротивления. В противном случае неизбежно обратное движение цены («откат»)
3). Третий тип тренда - это отсутствие тренда или горизонтальный тренд т.к. цены колеблются в горизонтальном диапазоне. Для него тоже существуют линии поддержки и сопротивления, но отсутствует явно выраженное движение цен вверх или вниз.
Линии
сопротивления и поддержки
Метод анализа линий сопротивления и поддержки помогает трейдерам следить за изменением тенденции – ее разворотом и усилением. Эти уровни особенно важны для постановки защитных стоп-приказов.
Существование
этих линий основывается на памяти
людей. Если трейдер помнит о том,
что недавно цена оттолкнулась от
какого-либо уровня поддержки и пошла
вверх, то в следующий раз он с
большей долей вероятности
Каналы колебаний курсов применяются когда для четко выраженного тренда одновременно существуют хорошие линии поддержки и сопротивления. Верхние точки (пики) графика лежат на уровне цен, при котором давление со стороны продавцов на валютном рынке превосходит давление со стороны покупателей, из-за чего цена не может расти. Точно так же нижние точки графика представляют уровень, на котором давление со стороны продавцов уступает давлению покупателей, и цена не может понизиться, т.е. создается уровень поддержки цены. Чем дольше график цены остается в пределах торгового канала, тем более надежными являются эти линии.
Также, применим анализ трендовых линий. Здесь применим принцип – «Тренд – ваш друг. Ограничение для этого правила заключается в том, что если применить его в конце жизненного цикла тренда «ЖЦТ», то существует риск остаться в меньшинстве перед огромным рынком и потерять деньги. Основной задачей при анализе трендовых линий и моделей будет не только выявление направления тренда, но и его ЖЦТ.
Существует несколько важных правил:
- для сильного тренда подтверждение не обязательно;
- для
тренда средней силы
- для
слабого тренда необходимо не
менее двух подтверждений
Под
подтверждением понимается либо настоящий
вывод, полученный в последующий промежуток
времени при анализе того же индикатора,
либо аналогичный вывод, полученный в
этот же промежуток времени при анализе
другого индикатора. Просуммировав все
выводы от анализа данных показателей,
можно получить чистое направление текущего
тренда и оценить, в каком периоде ЖЦТ
анализируемая цена на товар сейчас находится.
Для удобства рассмотрения цены часто
приводится линейный график, хотя эффективнее
применять графики отрезков (баров) или
японских свечек.
1.3 Корреляционный анализ
Регрессионная (факторная) модель (корреляционно-регрессионный анализ) – оценка связи между факторами и результативным показателем на основе статистических рядов данных. На основе различных статистических тестов принимается решение об использовании модели при принятии управленческих решений.
Экономические явления и процессы хозяйственной деятельности предприятий зависят от большого количества факторов. Как правило, только комплекс факторов в их взаимосвязи может дать более или менее полное представление о характере изучаемого явления.
Многофакторный корреляционный анализ состоит из нескольких этапов:
1) Определяются факторы, оказывающие воздействие на изучаемый показатель, и отбираются наиболее существенные для корреляционного анализа.
2) Собирается и оценивается исходная информация, необходимая для корреляционного анализа.
3) Изучается характер и моделируется связь между факторами и результативным показателем, то есть подбирается и обосновывается математическое уравнение, которое наиболее точно выражает сущность исследуемой зависимости.
4) Проводится расчет основных показателей связи корреляционного анализа.
5) Дается статистическая оценка результатов корреляционного анализа и практическое их применение.
От того, насколько правильно проведен отбор факторов, зависит точность выводов по итогам анализа. Главная роль при отборе факторов принадлежит теории, практическому опыту анализа. Большую помощь при отборе факторов оказывают аналитические группировки, способ сопоставления параллельных и динамических рядов, линейные графики. Факторы, оказывающие наиболее существенное влияние на уровень рентабельности корреляционной модели:
x1 - материалоотдача, руб.;
x2 - фондоотдача, коп.;
x3 - производительность труда, млн руб.;
x4 - продолжительность
оборота оборотных средств
x5 - удельный
вес продукции высшей
Объем выборки данных должен быть достаточно большим, так как только в массе наблюдений сглаживается влияние других факторов, тем точнее результаты анализа.
Собранная исходная информация должна быть проверена на достоверность, однородность и соответствие закону нормального распределения.
Использование недостоверной, неточной информации приведет к неправильным результатам анализа и выводам.
Одно
из условий корреляционного
Критерием однородности информации служит среднеквадратическое отклонение и коэффициент вариации. Среднеквадратическое отклонение показывает абсолютное отклонение индивидуальных значений от среднеарифметического.
Коэффициент вариации характеризует относительную меру отклонения отдельных значений от среднеарифметической.
Чем больше
коэффициент вариации, тем относительно
больший разброс и меньшая
выравненность изучаемых
Исходная информация должна соответствовать ее закону нормального распределения. Основная масса исследуемых сведений по каждому показателю должна быть сгруппирована около ее среднего значения, а объекты с очень маленькими значениями или с очень большими должны встречаться как можно реже.
После отбора факторов и оценки исходной информации важной задачей в корреляционном анализе является моделирование связи между факторными и результативными показателями, т.е. подбор соответствующего уравнения, которое наилучшим образом описывает изучаемые зависимости.
Для его обоснования используются: аналитические группировки, линейные графики и др. Если связь всех факторных показателей с результативным носит прямолинейный характер, то для записи этих зависимостей используется линейная функция. Если связь между результативным и факторными показателями носит криволинейных характер, то может быть использована степенная или логарифмическая функция.
Приведенные модели выгодны тем, что их параметрам (bi) можно дать экономическое объяснение. В линейной модели коэффициенты bi показывают, на сколько единиц изменяется результативный показатель с изменением факторного на единицу в абсолютном выражении, в степенных и логарифмических - в процентах.
Адекватность
разных моделей фактическим
Следующий этап корреляционного анализа — расчет уравнения связи (регрессии). Решение проводится обычно шаговым способом. Сначала в расчет принимается один фактор, который оказывает наиболее значимое влияние на результативный показатель, потом второй, третий и т.д. И на каждом шаге рассчитываются уравнение связи, множественный коэффициент корреляции и детерминации, F-отношение (критерий Фишера), стандартная ошибка и другие показатели, с помощью которых оценивается надежность уравнения связи. Величина их на каждом шаге сравнивается с предыдущей. Чем выше величина коэффициентов множественной корреляции, детерминации и критерия Фишера и чем ниже величина стандартной ошибки, тем точнее уравнение связи описывает зависимости, сложившиеся между исследуемыми показателями. Если добавление следующих факторов не улучшает оценочных показателей связи, то надо их отбросить, т.е. остановиться на том уравнении, где эти показатели наиболее оптимальны.