Шпаргалка по "Коллоидной химии"

Автор работы: Пользователь скрыл имя, 02 Сентября 2014 в 08:16, шпаргалка

Краткое описание

К лиофобным относятся колл. системы, в которых частицы ДФ слабо взаимодействуют с ДС. Эти системы могут быть получены только с затратой энергии и устойчивы лишь в присутствии стабилизаторов. Методы получения колл. растворов можно разделить на две группы: методы конденсации и диспергирования (в отд. группу выделяется метод пептизации).
В данной работе изложены 10 билетов, в каждом билете разобраны 4 вопроса.

Вложенные файлы: 1 файл

Шпоры по коллоидной химии.doc

— 1.31 Мб (Скачать файл)

Билет №1


1. Конденсационные  методы получения лиофобных дисперсных  систем.

К лиофобным относятся колл. системы, в которых частицы ДФ слабо взаимодействуют с ДС. Эти системы могут быть получены только с затратой энергии и устойчивы лишь в присутствии стабилизаторов.

Методы получения колл. растворов можно разделить на две группы: методы конденсации и диспергирования (в отд. группу выделяется метод пептизации).

Конденсация – метод получения дисп. систем, в основе которого лежит процесс укрупнения мельчайших частиц ДФ (молекулярных размеров) до частиц с размерами определённого класса дисп. систем.

В-во, находящееся в молекулярно-дисп. состоянии, можно перевести в колл. состояние при замене одного растворителя другим – т.н. методом замены растворителя.

Пример: Канифоль не растворяется в воде, но хорошо растворима в этаноле. При постепенном добавлении спиртового раствора канифоли к воде происходит резкое понижение растворимости канифоли, в результате чего образуется гидрозоль канифоли.

Колл. растворы можно получать также и методом химической  конденсации, основанном на проведении хим. реакций, сопровождающихся образованием нерастворимых или малорастворимых веществ. Используются различные типы реакций – разложения, гидролиза, окислительно-восстановительные и т.д. Так, красный золь золота получают восстановлением натриевой соли золотой кислоты формальдегидом:

NaAuO2 + HCOH + Na2CO3  → Au(колл.) + HCOONa + H2O

Золи могут быть получены по реакциям ионного обмена, в результате которых выделяется нерастворимая соль, образующая при определенных условиях коллоидный раствор. Так можно получить золь AgI:

AgNO3 + KI → AgI(золь) + KNO3

Процесс гидролиза различных солей может приводить к образованию коллоидных растворов нерастворимых гидроксидов или кислот. Так получают, например, золь гидроксида железа(III), имеющий следующее строение:

FeCl3 + H2O → {[Fe(OH)3]m · n FeO+ · (n–x)Cl–}x+ · x Cl–

Также лиофобных дисп. системы могут образовываться путём конденсации пересыщенного пара.

 

2. Особенности  адсорбции ионов и молекул  из растворов на твердой поверхности.

В зависимости от вида адсорбируемых частиц различают молекулярную и ионную адсорбции.

Ребиндером был сформулирован ряд закономерностей:

  •   В системе полярный адсорбент – неполярный растворитель амфифильные молекулы ориентируются полярной головкой к поверхности адсорбента, а неполярным хвостом – к растворителю. В системе неполярный адсорбент–полярный растворитель ориентация, очевидно, обратная.
  • На полярных адсорбентах лучше адсорбируются полярные адсорбаты из малополярных растворителей, на неполярных же адсорбентах – неполярные вещества из полярных растворителей.
  •   Чем лучше в данном растворителе растворяется адсорбат, тем он хуже адсорбируется, и наоборот: чем хуже он растворяется – тем лучше адсорбируется.
  • Если происходит адсорбция из разбавленных растворов, то в гомологических рядах она увеличивается с ростом молекулярной массы адсорбата.
  • Правило Дюкло – Траубе соблюдается только до определенной длины молекулы, а далее адсорбция может уменьшаться.
  • Как правило, с увеличением температуры адсорбция уменьшается за исключением того случая, когда вещество плохо растворяется (с увеличением температуры увеличится растворимость а следовательно, и адсорбция).
  • Процесс адсорбции идет в сторону выравнивания полярностей и тем интенсивнее, чем больше разность полярностей – правило уравнивания полярностей Ребиндера. Полярность адсорбата должна быть промежуточной между полярностью среды и адсорбента.

3. Реология

Реология - это наука, формулирующая правила и законы обобщённого рассмотрения механического поведения твёрдо- и жидкообразных тел. Основным методом реологии является рассмотрение механ. свойств на конкретных идеальных моделях. Объектами реологии являются полимеры (расплавы, р-ры), дисперсные системы (пены, эмульсии, суспензии, порошки, пасты), металлы и сплавы, нефтепродукты и т.д.

Полная реологическая кривая мало концентрированной дисперсной системы с анизометричными частицами:

γ – эффективная относительная деформация сдвига

τ – скорость течения (напряжение сдвига)

ηэф = τ/γ

 

Пояснение: При малых скоростях деформации эффективная  вязкость максимальна, затем она постепенно падает до некоторого максимального значения, не изменяющегося при дальнейшем увеличении скорости и соответствующего течению системы с полностью ориентированными  в потоке частицами.

 

4. Сравните давление  насыщенного пара над одинаковыми  по размерам каплями воды и  пропилового спирта.

Поверхностное натяжение воды гораздо больше, чем у пропилового спирта. На молекулы поверхностного слоя воды действует бОльшая сила со стороны окружающих молекул за счет водородных связей, и поэтому они удерживаются сильнее. У пропилового спирта также имеются водородные связи, но их гораздо меньше, чем у воды, вследствие чего, его молекулы  легче покидают поверхностный слой. Таким образом, давление насыщенного пара над водой будет меньше, чем над пропиловым спиртом.

Для более точного решения можно воспользоваться уравнением Кельвина:

М – молярная масса, кг.

r – радиус капли, м.

- давление насыщенного пара над плоской поверхностью, Па.

- пов. натяжение, Дж/м2

 

Билет 2


1. Диспергационные  методы получения лиофобных дисперсных  систем.

Для того, чтобы получить коллоидный раствор или золь, необходимо выполнить два условия: 1) создать в жидкости твердые или жидкие нерастворимые частицы коллоидной степени дисперсности; 2) обеспечить устойчивость этих частиц, предохранив их от слипания друг с другом (от коагуляции), т. е. стабилизировать систему. Стабилизация коллоидных систем может производиться путем введения в систему нового компонента – стабилизатора, который адсорбируется на поверхности коллоидных частиц и придает частицам заряд и/или образует защитную оболочку.

Свободнодисперсные системы (порошки, суспензии, эмульсии, золи) можно получить двумя способами: диспергированием и конденсацией.

Диспергирование основано на получении из сплошного и крупного по размерам тела 3 более мелких частиц дисперсной фазы 2.

Конденсация, напротив, связана с укрупнением частиц 1, в том числе и частиц молекулярных размеров, до частиц определенного класса дисперсных систем 2.  Мы даже не подозреваем, что во многих процессах происходит возникновение и разрушение дисперсных систем.

Диспергирование может быть самопроизвольным и несамопроизвольным.

Самопроизвольное диспергирование характерно для лиофильных систем.

Несамопроизвольное диспергирование характерно для лиофобных систем. Здесь процесс диспергирования осуществляется за счет внешней энергии.

Несамопроизвольное диспергирование бывает:

- механическое

- физическое (диспергирование ультразвуком, электрическими методами)

- физико-химическое (пептизация).

Механическое диспергирование в зависимости от агрегатного состояния дисперсной фазы:

- измельчение, истирание, раздавливание и т. д.;

- распыление;

- барботаж.

Измельчение проводят в мельницах различной конструкции, например в шаровых (а) или коллоидных (б) мельницах.


В шаровых мельницах получают частицы размером 6·104 нм при сухом помоле и менее 103 нм при мокром; в коллоидных – 100 нм и менее.

Измельчением получают системы типа т/г, т/ж, распылением – ж/г, ж/ж, барботажем – г/ж.

Разрушение материалов в процессе диспергирования может быть облегчено при использовании эффекта Ребиндера – адсорбционного понижения прочности твердых тел. Этот эффект заключается в уменьшении поверхностной энергии с помощью поверхностно-активных веществ.

Диспергирование ультразвуком высокой частоты эффективно лишь в том случае, если диспергируемое вещество обладает малой прочностью. При действии на суспензию ультразвука возникают механические колебания (порядка нескольких тысяч в 1 с), которые разрывают частицы на более мелкие. Таким путем получают органозоли хрупких металлов, гидрозоли серы, графита, гидроксидов металлов, различных полимеров и т. п.

При диспергировании в электрических аппаратах избыток электрических зарядов сообщается распыляемой жидкости, и в результате отталкивания одноименных зарядов происходит дробление жидкости на капли.

К физико-химическому диспергированию относится метод пептизации. Пептизацией называют переход осадков под действием пептизаторов в состояние коллоидного раствора. Пептизировать можно только “свежие” (свежеприготовленные) осадки, в которых частицы коллоидного размера соединены в более крупные агрегаты через прослойки ДС. По мере хранения осадков происходят явления рекристаллизации и старения, приводящие к сращиванию частиц друг с другом, что препятствует пептизации.

Слева - аморфные сферические частицы свежего золя гидроокиси алюминия

Справа - кристаллические частицы золя того же вещества по истечении 2-3 месяцев после приготовления золя

Различают пептизацию:

  • адсорбционную;
  • диссолюционную;
  • промывание осадка растворителем

Получение золя бромида серебра  адсорбционной пептизацией.

Приготовим осадок бромида серебра AgBr:

AgNO3 + KBr → AgBr↓ + KNO3

   свежий осадок

Возьмем избыток AgNO3 (который играет роль пептизатора) => образуется золь, структурная единица дисперсной фазы которого называется мицеллой. Как происходит образование мицеллы??? Ионы Ag+ (потенциалопределяющие ионы) адсорбируются на поверхности частиц осадка AgBr, заряжая их положительно, к положительно заряженной поверхности образовавшегося ядра мицеллы притягиваются ионы противоположного знака – противоионы (ионы NO3-). Часть этих ионов, составляющая адсорбционный слой, прочно удерживается у поверхности ядра за счет электростатических и адсорбционных сил. Ядро вместе с адсорбционным слоем составляет коллоидную частицу. Остальные противоионы связаны с ядром только электростатическими силами. Эти противоионы образуют диффузный слой. Наличие заряда у коллоидных частиц приводит к их отталкиванию и обеспечивает устойчивость золя.

Диссолюционная пептизация отличается от адсорбционной только отсутствием в готовом виде электролита-пептизатора. Рассмотрим на примере получения золя гидроксида железа.

FeCl3 + NH4OH → Fe(OH)3↓ + NH4Cl – получили свежий осадок, который помещаем на фильтр и осторожно добавляем HCl:

Fe(OH)3 + HCl → FeOCl + 2H2O

Образовавшийся FeOCl является электролитом – пептизатором. Далее происходят такие же процессы, как и при адсорбционной пептизации с образованием мицелл:

{[mFe(OH)3]·nFeO+·(n-x)Cl-}x+·xCl-.

Метод промывания осадка растворителем используется, если осадок получен при значительном избытке одного из реагентов. Большая концентрация ионов в растворе вызывает сжатие двойного электрического слоя. Ионы диффузного слоя проникают в адсорбционный,  в результате заряд коллоидной частицы становится равным 0 и происходит агрегация частиц:

{[mFe(OH)3]·nFe3+·3nCl-}0.

После промывания осадка растворителем мицеллы будут иметь вид:

{[mFe(OH)3]·nFe3+·3(n-x)Cl-}3x+·3xCl-.

2. Межфазная поверхность, ее силовое поле. Поверхностное  натяжение как характеристика  этого поля

На межфазной поверхности существует поле нескомпенсированных межмолекулярных сил из-за различия в составе и структуре контактирующих фаз, избыточные значения плотностей термодинамических функций, их “сгущение”.

Межфазная поверхность – конечный по толщине слой, в котором свойства и термодинамические функции отличаются от таковых в объеме.

Молекулы, прилегающие к поверхности по энергетическому состоянию отличны от находящихся в объеме. Для внутренних молекул равнодействующая всех межмолекулярных взаимодействий равна нулю, а для поверхностных молекул она направлена перпендикулярно поверхности внутрь фазы с большим межмолекулярным взаимодействием. Поверхностные молекулы втягиваются в глубь жидкости и возникает внутреннее давление. Следствием этого является поверхностное натяжение – важная характеристика поверхности. Существует две трактовки σ – силовая и энергетическая:

Силовой подход

Энергетический подход

Основываясь на законах механики, величину σ рассматривают как следствие внутреннего давления и в частности как силу, приложенную к единице длины контура на поверхности раздела, стремящуюся сократить эту поверхность или препятствующую растяжению.

Величина σ – мера стремления поверхности к сокращению, следствие межмолекулярных сил. Отсюда: – сила, приложенная к единице длины контура поверхности раздела фаз, действующая перпендикулярно контуру и тангенциально (вдоль) поверхности.

Если мы осуществляем увеличение поверхности (например, диспергирование), то необходимо вывести молекулы из объема на поверхность s. Надо совершить работу против рвн. Она тем больше, чем больше рвн, и мера этой работы – величина σ.

Если осуществлять обратимый процесс увеличения площади поверхности s на величину ds, то полезная работа будет равна:

.

В обратимом процессе полезная работа максимальна и равна изменению энергий Гиббса или Гельмгольца, взятых с обратным знаком. Тогда σ можно представить в виде:

 и 

В общем случае σ – частная производная любого термодинамического потенциала по площади межфазной поверхности.



Единство энергетического и силового подходов демонстрирует опыт Дюпре:

На проволочной рамке (рис. а) образуем мыльную пленку. Нижняя сторона рамки – подвижная и, если ничем не нагружена, поднимается вверх из-за стремления пленки сократиться, т. е. На рамку действует сила поверхностного натяжения Fп. Эту силу можно уравновесить грузиком весом Р = Fп. При увеличении веса груза на бесконечно малую величину происходит перемещение подвижной стороны рамки на dh (рис. б). Груз при этом совершает работу против силы Fп:

.

Одновременно из-за увеличения поверхности пленки возрастает поверхностная энергия:

Информация о работе Шпаргалка по "Коллоидной химии"