Характеристика типовых задач математического моделирования и подходов к их решению

Автор работы: Пользователь скрыл имя, 07 Апреля 2014 в 22:15, курсовая работа

Краткое описание

Целью данной курсовой работы является изучение методов решения задач математического моделирования на примере задач планирования производства и транспортной задачи.
Из поставленной цели вытекают следующие задачи:
1. Изучение теоретической части материала.
2. Создание математических моделей задач планирования производства и транспортных задач
3. Решение задачи планирования производства аналитическим и программным методами.
4. Решение транспортной задачи различными методами и программным способом.

Содержание

ВВЕДЕНИЕ
1. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ
1.1 Определение основных понятий математического моделирования и характеристика этапов создания математической модели
1.2 Характеристика типовых задач математического моделирования и подходов к их решению
1.3 Определение и характеристика линейного программирования
1.4 Характеристика симплекс-метода как основного аппарата решения задач линейного программирования
1.5 Основные этапы, особенности и методы решения транспортной задачи
2. ПРАКТИЧЕСКАЯ ЧАСТЬ
2.1 Составление математической модели задачи планирования производства
2.2 Решение задачи планирования производства геометрическим способом
2.3 Решение задачи планирования производства симплекс-методом
2.4 Решение задачи планирования производства с помощью табличного процессора MS Excel
2.5 Составление математической модели транспортной задачи
2.6 Нахождение опорного плана транспортной задачи методом северо-западного угла
2.7 Нахождение опорного плана транспортной задачи методом наименьшего элемента
2.8 Решение транспортной задачи методом потенциалов
2.9 Решение транспортной задачи при помощи табличного процессора Excel
ЗАКЛЮЧЕНИЕ
ЛИТЕРАТУРА

Вложенные файлы: 1 файл

Документ Microsoft Word.doc

— 1,010.50 Кб (Скачать файл)

Размещено на http://www.allbest.ru/

 

 

 

Введение

 

Различные технико-экономические и экономические производственные задачи, начиная от оптимальной загрузки станка и раскройки стального листа или полотна ткани до анализа межотраслевого баланса и оценки темпов роста экономики страны в целом, приводят к необходимости решения тех или иных задач линейного программирования.

На сегодняшний день это является важным инструментом экономического анализа: позволяет получить четкое представление о состоянии предприятия, охарактеризовать и количественно описать его внутреннюю структуру и внешние связи. Таким образом, экономико-математическое моделирование работы предприятия, фирмы, основанное на анализе его деятельности, должно обогащать этот анализ результатами и выводами, полученными после решения соответствующих задач.

Часто эксперимент с математической моделью может заменить реальный эксперимент, который либо слишком дорог, либо невозможен по тем или иным причинам. Все это и дает весомую актуальность применению задач линейного программирования в современных экономических условиях.

Главной целью решения транспортной задачи является планирование наиболее рациональных путей и способов транспортировки товаров.

Транспорт играет исключительно важную роль в экономике любой страны, обеспечивая межпроизводственные связи в различных отраслях промышленности. В условиях жесткой конкуренции каждое предприятие вынуждено минимизировать свои расходы, значительную часть которых составляет именно транспортные расходы.

Целью данной курсовой работы является изучение методов решения задач математического моделирования на примере задач планирования производства и транспортной задачи.

Из поставленной цели вытекают следующие задачи:

  1. Изучение теоретической части материала.
  2. Создание математических моделей задач планирования производства и транспортных задач
  3. Решение задачи планирования производства аналитическим и программным методами.
  4. Решение транспортной задачи различными методами и программным способом.

 

 

1. теоретическая часть

 

1.1 Определение основных понятий математического моделирования и характеристика этапов создания математической модели

 

Под моделированием понимают процесс построения, изучения и применения моделей.

Модель – это материальный тип или мысленно представляемый объект, который в процессе исследования замещает объект-оригинал так, что его непосредственное изучение даёт новые знания об объекте оригинале.

Математическая модель - математическое описание физического объекта процесса или явления, выражающее состояние его внутренней динамики взаимодействия и свойства, это приближенное описание какого-либо класса явлений, выраженное с помощью математической символики.

В математических методах широко применяются как аналитические, так и статистические модели.

Аналитические модели более грубы, учитывать меньшее число факторов, всегда требует каких-то допущений и упрощений.

Статистические модели по сравнению с аналитическими более точны и подробны, не требуют столь грубых допущений, позволяют учесть большее количество факторов.

Операции – всякое мероприятие, система действий, объединенных единым замыслом и направлением к достижению какой-либо цели. Операция является управляемым мероприятием, то есть от нас зависти, каким способом выбрать некоторые параметры, характеризующие ее организацию.

Исследование операций – совокупность прикладных математических методов, используемых для решения практических организационных задач.

Решение - это всякий определенный набор зависящих от нас параметров.

Оптимальным - называется решения, по тем или иным признакам предпочтительнее перед другими.

Допустимыми решения - это решения, удовлетворяющие системе ограничений и требованию неотрицательности.

Допустимый план - такой вариант плана, который удовлетворяет всем заданным ограничениям задачи, но не обязательно оптимальный.

Оптимальный план – допустимый план, который удовлетворяет условиям максимизации или минимизации (в зависимости от условия задачи).

Целевая функция - функция переменных, от которых зависит достижение оптимального состояния системы.

Математическое моделирование – мощный метод изучения внешнего мира, а также прогнозирования и управления.

Процесс математического моделирования можно подразделить на четыре этапа.

  • Первый этап – формулировка законов, связывающих основные объекты модели. Этот этап требует широкого знания фактов, относящихся к изучаемым явлениям, и глубокого проникновения в их взаимосвязи.
  • Второй этап – исследование математических задач, к которым приводят построенные математические модели.
  • Третий этап – выяснение того, удовлетворяет ли принятая гипотетическая модель критерию практики.
  • Четвертый этап – последующий анализ модели в связи с накоплением данных об изучаемых явлениях и модернизации модели

Основные этапы математического моделирования

1) Построение модели. На этом этапе задается некоторый «нематематический» объект — явление природы, конструкция, экономический план, производственный процесс и т. д. При этом, как правило, четкое описание ситуации затруднено. Сначала выявляются основные особенности явления и связи между ними на качественном уровне. Затем найденные качественные зависимости формулируются на языке математики, то есть строится математическая модель. Это самая трудная стадия моделирования.

2) Решение математической задачи, к которой приводит модель. На этом этапе большое внимание уделяется разработке алгоритмов и численных методов решения задачи на ЭВМ, при помощи которых результат может быть найден с необходимой точностью и за допустимое время.

3) Интерпретация полученных следствий из математической модели. Следствия, выведенные из модели на языке математики, интерпретируются на языке, принятом в данной области.

4) Проверка адекватности модели. На этом этапе выясняется, согласуются ли результаты эксперимента с теоретическими следствиями из модели в пределах определенной точности.

5) Модификация модели. На этом этапе происходит либо усложнение модели, чтобы она была более адекватной действительности, либо ее упрощение ради достижения практически приемлемого решения.

Классификация моделей

Классифицировать модели можно по разным критериям. Например, по характеру решаемых проблем модели могут быть разделены на функциональные и структурные. В первом случае все величины, характеризующие явление или объект, выражаются количественно. При этом одни из них рассматриваются как независимые переменные, а другие — как функции от этих величин. Математическая модель обычно представляет собой систему уравнений разного типа (дифференциальных, алгебраических и т. д.), устанавливающих количественные зависимости между рассматриваемыми величинами. Во втором случае модель характеризует структуру сложного объекта, состоящего из отдельных частей, между которыми существуют определенные связи. Как правило, эти связи не поддаются количественному измерению. Для построения таких моделей удобно использовать теорию графов.

Граф — это математический объект, представляющий собой некоторое множество точек (вершин) на плоскости или в пространстве, некоторые из которых соединены линиями (ребрами).

По характеру исходных данных и результатов предсказания модели могут быть разделены на детерминистические и вероятностно-статистические. Модели первого типа дают определенные, однозначные предсказания. Модели второго типа основаны на статистической информации, а предсказания, полученные с их помощью, имеют вероятностный характер.

 

1.2 Характеристика типовых задач математического моделирования и подходов к их решению

 

Задачи моделирования делятся на две категории: прямые и обратные.

Прямые задачи отвечают на вопрос, что будет, если при заданных условиях мы выберем какое-то решение из множества допустимых решений. В частности, чему будет равен, при выбранном решении критерий эффективности.

Обратные задачи отвечают на вопрос: как выбрать решение из множества допустимых решений, чтобы критерий эффективности обращался в максимум или минимум.

Если число допустимых вариантов решения невелико, то можно вычислить критерий эффектности для каждого из них, сравнить между собой полученные значения и непосредственно указать один или несколько оптимальных вариантов. Такой способ нахождения оптимального решения называется "простым перебором". Когда число допустимых вариантов решения велико, то поиск оптимального решения простым перебором затруднителен, а зачастую практически невозможен. В этих случаях применяются методы "направленного" перебора, обладающие той особенностью, что оптимальное решение находится рядом последовательных попыток или приближений, из которых каждое последующие приближает нас к искомому оптимальному.

Модели принятия оптимальных решений отличаются универсальностью. Их можно классифицировать как задачи минимизации (максимизации) критерия эффективности, компоненты которого удовлетворяют системе ограничений (равенств и/или) неравенств.

Их можно разделить на:

принятие решений в условиях определенности - исходные данные - детерминированные; принятие решений в условиях неопределенности - исходные данные - случайные величины.

 

Таблица 1.2.1

Классификация задач оптимизации

Исходные данные

Переменные

Зависимости

Задача

Детерминированные

Непрерывные

Линейные

Линейного программирования

Целочисленные

Линейные

Целочисленного программирования

Непрерывные, целочисленные

Нелинейные

Нелинейного программирования

Случайные

Непрерывные

Линейные

Стохастическое программирование


 

 

А по критерию эффективности:

  • одноцелевое принятие решений (один критерий эффективности);
  • многоцелевое принятие решений (несколько критериев эффективности).

Наиболее разработан и широко используется на практике аппарат одноцелевого принятия решений в условиях определенности, который получил название математического программирования. В этом "детерминированном" случаи, когда все условия операции известны заранее. тогда, обратная задача будет включает в себя критерий эффективности и некоторые известные заранее факторы (ограничения) позволяющие выбрать множество допустимых решений.

В общем виде обратная детерминированная задача будет выглядеть следующим образом.

При заданном комплексе ограничений найти такое оптимальное решение, принадлежащее множеству допустимых решений, которое обращает критерий эффективности в максимум (минимум).

Метод поиска экстремума и связанного с ним оптимального решения должен всегда исходить из особенности критерия эффективности и вида ограничений, налагаемых на решение.

Реальные задачи содержит помимо выше перечисленных факторов, еще одну группу - неизвестные факторы. Тогда обратную задачу можно сформулировать следующим образом.

При заданном комплексе ограничений, с учетом неизвестных факторов, найти такое оптимальное решение, принадлежащее множеству допустимых решений, которое, по возможности, обеспечивает максимальное (минимальное) значение критерий эффективности.

Это уже другая, не чисто математическая задача. Наличие неопределенных факторов переводит эту задачу в новое качество: она превращается в задачу о выборе решений в условиях неопределенности.

 

1.3 Определение и характеристика линейного программирования

 

Линейное программирование – это направление математической программирования, изучающая методы решения экстремальный задач, которые характеризуются линейной зависимостью между переменными и линейным критерием.

Линейное программирование - наиболее разработанный и широко применяемый раздел математического программирования. Это объясняется следующим:

  • математические модели очень большого числа экономических задач линейны относительно искомых переменных;
  • эти типы задач в настоящее время наиболее изучены;
  • для них разработаны специальные конечные методы, с помощью которых эти задачи решаются, и соответствующие стандартные программы для их решения на ЭВМ;
  • многие задачи линейного программирования, будучи решенными, нашли уже сейчас широкое практическое применение в народном хозяйстве;
  • некоторые задачи, которые в первоначальной формулировке не являются линейными, после ряда дополнительных ограничений и допущений могут стать линейными или могут быть приведены к такой форме, что их можно решать методами линейного программирования.

Необходимым условием постановки задачи линейного программирования являются ограничения на наличие ресурсов, величину спроса, производственную мощность предприятия и другие производственные факторы.

Сущность линейного программирования состоит в нахождении точек наибольшего или наименьшего значения некоторой функции при определенном наборе ограничений, налагаемых на аргументы и образующих систему ограничений, которая имеет, как правило, бесконечное множество решений. Каждая совокупность значений переменных (аргументов функции F), которые удовлетворяют системе ограничений, называется допустимым планом задачи линейного программирования. Функция F, максимум или минимум которой определяется, называется целевой функцией задачи. Допустимый план, на котором достигается максимум или минимум функции F, называется оптимальным планом задачи.

Информация о работе Характеристика типовых задач математического моделирования и подходов к их решению