Лекции по "Инженерной деятельности"

Автор работы: Пользователь скрыл имя, 12 Февраля 2015 в 06:34, курс лекций

Краткое описание

1Научно- технический прогресс и инженерная деятельность.
НАУЧНО-ТЕХНИЧЕСКИЙ ПРОГРЕСС (НТП) — поступательное и взаимосвязанное развитие науки и техники, характерное для крупного машинного производства. Под воздействием роста и усложнения общественных потребностей научно-технический прогресс ускоряется, что позволяет поставить все более могущественные природные силы и ресурсы на службу человеку, превратить производство в технологический процесс целенаправленного применения данных естественных и других наук.

Вложенные файлы: 1 файл

1Научно.docx

— 189.96 Кб (Скачать файл)

Система научного знания каждой дисциплины гетерогенна. В ней можно обнаружить различные формы знания: эмпирические факты, законы, принципы, гипотезы, теории различного типа и степени общности и т.д.

Принято выделять два основных уровня научного познания: эмпирический и теоретический. Это деление связано с тем, что субъект может получать знания опытным путем (эмпирическим) и путем сложных логических операций, то есть теоретически. 

В теоретическом исследовании отсутствует непосредственное практическое взаимодействие с объектами. На этом уровне объект может изучаться только опосредованно, в мысленном эксперименте, но не в реальном.

 

Возьмем, например, описание опытов Био и Савара, в которых было обнаружено магнитное действие электрического тока. Это действие фиксировалось по поведению магнитной стрелки, находящейся вблизи прямолинейного провода с током. И провод с током, и магнитная стрелка обладали бесконечным числом признаков. Они имели определенную длину, толщину, вес, конфигурацию, окраску, находились на некотором расстоянии друг от друга, от стен помещения, в котором проводился опыт, от Солнца, от центра Галактики и т.д.

Из этого бесконечного набора свойств и отношений в эмпирическом термине "провод с током", как он используется при описании данного опыта, были выделены только такие признаки:

1) быть на определенном расстоянии  от магнитной стрелки;

2) быть прямолинейным;

3) проводить электрический ток  определенной силы.

Все остальные свойства здесь не имеют значения, и от них мы абстрагируемся в эмпирическом описании. Точно так же по ограниченному набору признаков конструируется тот идеальный эмпирический объект, который образует смысл термина "магнитная стрелка". Каждый признак эмпирического объекта можно обнаружить в реальном объекте, но не наоборот.

Что же касается теоретического познания, то в нем применяются иные исследовательские средства. Здесь отсутствуют средства материального, практического взаимодействия с изучаемым объектом. Но и язык теоретического исследования отличается от языка эмпирических описаний. В качестве его основы выступают теоретические термины, смыслом которых являются теоретические идеальные объекты. Их также называют идеализированными объектами, абстрактными объектами или теоретическими конструктами. Это особые абстракции, которые являются логическими реконструкциями действительности. Ни одна теория не строится без применения таких объектов.

Их примерами могут служить материальная точка, абсолютно черное тело, идеальный товар, который обменивается на другой товар строго в соответствии с законом стоимости (здесь происходит абстрагирование от колебаний рыночных цен), идеализированная популяция в биологии, по отношению к которой формулируется закон Харди-Вайнберга (бесконечная популяция, где все особи скрещиваются равновероятно).

Идеализированные теоретические объекты, в отличие от эмпирических объектов, наделены не только теми признаками, которые мы можем обнаружить в реальном взаимодействии объектов опыта, но и признаками, которых нет ни у одного реального объекта. Например, материальную точку определяют как тело, лишенное размеров, но сосредоточивающее в себе всю массу тела. Таких тел в природе нет. Они выступают как результат мысленного конструирования, когда мы абстрагируемся от несущественных (в том или ином отношении) связей и признаков предмета и строим идеальный объект, который выступает носителем только сущностных связей. В реальности сущность нельзя отделить от явления, одно проявляется через другое. Задачей же теоретического исследования является познание сущности в чистом виде. Введение в теорию абстрактных, идеализированных объектов как раз и позволяет решать эту задачу.

На уровне  теоретического познания происходит выделение сущностных связей в чистом виде.

Сущность объекта представляет собой взаимодействие ряда законов, которым подчиняется данный объект. Задача теории как раз и заключается в том, чтобы, расчленив эту сложную сеть законов на компоненты, затем воссоздать шаг за шагом их взаимодействие и таким образом раскрыть сущность объекта.

Изучая явления и связи между ними, эмпирическое познание способно обнаружить действие объективного закона. Но оно фиксирует это действие, как правило, в форме эмпирических зависимостей, которые следует отличать от теоретического закона как особого знания, получаемого в результате теоретического исследования объектов.

Эмпирическая зависимость является результатом индуктивного обобщения опыта и представляет собой вероятностно-истинное знание. Теоретический же закон - это всегда знание достоверное. Получение такого знания требует особых исследовательских процедур.

Известен, например, закон Бойля-Мариотта, описывающий корреляцию между давлением и объемом газа:

PV = const,

где P - давление газа,

V - его объем.

Вначале он был открыт Р. Бойлем как индуктивное обобщение опытных данных, когда в эксперименте была обнаружена зависимость между объемом сжимаемого под давлением газа и величиной этого давления.

Сама история открытия этого закона весьма интересна и поучительна. Как эмпирическая зависимость он был получен во многом случайно, как побочный результат спора между двумя известными физиками XVIII столетия Р. Бойлем и Ф. Линнусом. Спор шел по поводу интерпретации опытов Бойля, обнаруживших явление барометрического давления. Бойль проделал следующий опыт: трубку, запаянную сверху и наполненную ртутью, он погружал в чашку с ртутью. Согласно принципу сообщающихся сосудов следовало ожидать, что уровень ртути в трубке и в чашке будет выровнен. Но опыт показал, что лишь некоторая часть ртути выливается в чашку, а остальная часть в виде столбика стоит над поверхностью ртути в чашке. Бойль интерпретировал этот опыт следующим образом: давление воздуха на поверхность ртути в чашке удерживает столбик ртути над этой поверхностью. Высота столбика является показателем величины атмосферного давления. Тем самым был предложен принцип барометра - прибора, измеряющего давление.

Однако Ф. Линнус выдвинул следующие возражения: воздух состоит из легких частиц, он подобен тонкой и податливой жидкости, которая не может устоять под давлением тяжелых частиц ртути. Поэтому воздух не может удерживать столб ртути. Удерживает его притяжение ртути к верхнему концу барометрической трубки. Линнус писал, что, затыкая сверху барометрическую трубку пальцем, он чувствовал нити притяжения, когда опускал ее в чашку. Сам по себе этот исторический факт весьма показателен. Он свидетельствует о том, что один и тот же результат опыта может получить различные интерпретации и использоваться для подтверждения различных концепций. Чтобы доказать Линнусу, что воздух способен удерживать столб ртути, Бойль поставил новый опыт. Он взял изогнутую в виде сифона стеклянную трубку с запаянным коротким коленом и стал постепенно наполнять ее ртутью. По мере увеличения столбика ртути воздух в колене сжимался, но не вытеснялся полностью. Бойль составил таблицу отношения объемов воздуха и величины столбика ртути и послал ее Линнусу как доказательство правильности своей интерпретации.

Казалось бы, история с объяснением барометрического давления закончена. Но она получила неожиданно продолжение. У Бойля был ученик, молодой человек по имени Тоунлей, которого Бойль обучал основам физики и математики. Именно Тоунлей, изучая таблицу опытов Бойля, подметил, что объемы сжимаемого воздуха пропорциональны высоте давящего на воздух столбика ртути. После этого Бойль увидел свои опыты в новом ракурсе. Столбик ртути - это своеобразный поршень, сжимающий воздух, и вес столбика соответствуют давлению. Поэтому пропорция в табличных данных означает зависимость между величиной давления и объема газа. Так было получено соотношение

PV = const,

которое Бойль подтвердил множеством опытов с давлениями, большими и меньшими атмосферного.

Но имела ли эта зависимость статус достоверного закона? Очевидно нет, хотя и выражалась математической формулой. Это была зависимость, полученная путем индуктивного обобщения результатов опыта и поэтому имевшая статус вероятностно-истинного высказывания, а не достоверного знания, каковым является теоретический закон. Если бы Бойль перешел к опытам с большими давлениями, то он обнаружил бы, что эта зависимость нарушается. Физики говорят, что закон

PV = const

применим только в случае очень разреженных газов, когда система приближается к модели идеального газа и межмолекулярными взаимодействиями можно пренебречь. А при больших давлениях существенными становятся взаимодействия между молекулами (ван-дер-ваальсовы силы), и тогда закон Бойля нарушается. Зависимость, открытая Бойлем, была вероятностно-истинным знанием, обобщением такого же типа, как утверждение "все лебеди белые", которое было справедливым, пока не открыли черных лебедей. Теоретический же закон

PV = const

был получен позднее, когда была построена модель идеального газа.

Вывел этот закон физик Д. Бернулли (академик Санкт-Петербургской Императорской академии) в 1730 г. Он исходил из атомистических представлений о газе и представил частицы газа в качестве материальных точек, соударяющихся наподобие упругих шаров.

К идеальному газу, находящемуся в идеальном сосуде под давлением, Бернулли применил законы ньютоновской механики и путем расчетов получил формулу

PV = const.

Это была та же самая формула, которую уже ранее получил Р. Бойль. Но смысл ее был уже иной. У Бойля

PV = const

соотносилась со схемой реальных экспериментов и таблицами их результатов. У Бернулли она была связана с теоретической моделью идеального газа. В этой модели были выражены сущностные характеристики поведения любых газов при относительно небольших давлениях. И закон, непосредственно описывающий эти сущностные связи, выступал уже как достоверное, истинное знание.

Итак, выделив эмпирическое и теоретическое познание как два особых типа исследовательской деятельности, можно сказать, что предмет их разный, т. е. теория и эмпирическое исследование имеют дело с разными срезами одной и той же действительности. Эмпирическое исследование изучает явления и их корреляции; в этих корреляциях, в отношениях между явлениями оно может уловить проявление закона. Но в чистом виде он дается только в результате теоретического исследования.

Следует подчеркнуть, что увеличение количества опытов само по себе не делает эмпирическую зависимость достоверным фактом, потому что индукция всегда имеет дело с незаконченным, неполным опытом. Сколько бы мы ни проделывали опытов и ни обобщали их, простое индуктивное обобщение опытных результатов не ведет к теоретическому знанию. Теория не строится путем индуктивного обобщения опыта. Это обстоятельство во всей его глубине было осознано в науке сравнительно поздно, когда она достигла достаточно высоких ступеней теоретизации.

Итак, эмпирический и теоретический уровни познания отличаются по предмету, средствам и методам исследования. Однако выделение и самостоятельное рассмотрение каждого из них представляет собой абстракцию. В реальности эти два слоя познания всегда взаимодействуют.

 

Mетоды, используемые на теоретическом  уровне научных исследований

К таким методам принято относить

абстрагирование,

аксиоматический,

анализ и синтез,

идеализация,

индукцию и дедукцию,

мысленное моделирование,

восхождение от абстрактного к конкретному

 

  Абстрагирование

Это отвлечение от некоторых свойств изучаемых объектов и выделение тех свойств, которые изучаются в данном исследовании. Имеет универсальный характер, ибо каждый шаг мысли связан с этим процессом или с использованием его результата. Сущность этого метода состоит в мысленном отвлечении от несущественных свойств, связей, отношений, предметов и в одновременном выделении, фиксировании одной или нескольких интересующих исследователя сторон этих предметов.

Различают процесс абстрагирования и абстракцию. Процесс абстрагирования - это совокупность операций, ведущих к получению результата, т. е. к абстракции. Примерами абстракции могут служить бесчисленные понятия, которыми оперирует человек не только в науке, но и в обыденной жизни: дерево, дом, дорога, жидкость и т. п. Процесс абстрагирования в системе логического мышления тесно связан с другими методами исследования и прежде всего - с анализом и синтезом.

 

  Аксиоматический

Впервые был применен Евклидом. Суть метода состоит в том, что вначале рассуждения задается набор исходных положений, не требующих доказательств, поскольку они являются совершенно очевидными. Это положения называют аксиомами или постулатами. Из аксиом по определенным правилам строится система выводных суждений. Совокупность исходных аксиом и выведенных на их основе предложений (суждений) образует аксиоматически построенную теорию.

 

  Анализ и синтез

Анализ - это метод, в основе которого лежит процесс разложения предмета на составные части. Когда ученый пользуется методом анализа, он мысленно разделяет изучаемый объект, то есть, выясняет, из каких частей он состоит, каковы его свойства и признаки.

Синтез представляет собой соединение полученных при анализе частей в нечто целое. В результате применения синтеза происходит соединение знаний, полученных в результате использования анализа в единую систему.

Методы анализа и синтеза в научном творчестве органически связаны между собой и могут принимать различные формы в зависимости от свойств изучаемого объекта и цели исследования.  
Прямые (эмпирические) анализ и синтез применяются на стадии поверхностного ознакомления с объектом. При этом осуществляется выделение отдельных частей объекта, обнаружение его свойств, простейшие измерения, фиксация непосредственно данного, лежащего на поверхности общего.  
Наиболее глубоко проникнуть в сущность объекта позволяют структурно-генетические анализ и синтез. Этот тип анализа и синтеза требует вычленения в сложном явлении таких элементов, которые представляют самое главное в них, их «клеточку», оказывающую решающее влияние на все остальные стороны сущности объекта.  
Для исследования сложных развивающихся объектов применяется исторический метод. Он используется только там, где так или иначе предметом исследования становится история объекта.

Информация о работе Лекции по "Инженерной деятельности"