Автор работы: Пользователь скрыл имя, 19 Декабря 2013 в 11:22, курс лекций
Начертательная геометрия относится к числу математических наук. Для неё характерна та общность методов, которая свойственна каждой математической науке. Методы начертательной геометрии находят самое широкое применение в объектах изучения самой различной природы: в механике, архитектуре и строительстве, химии, геодезии, геологии, кристаллографии и т.д. Но наибольшее значение и применение методы начертательной геометрии нашли в различных областях техники при составлении различного вида технических чертежей: машиностроительных, строительных, различного рода карт и т.д. Начертательная геометрия, таким образом, является звеном, соединяющим математические науки с техническими.
Лекция12
Лекции: 1 2 3 4 5 6 7 8 9 10 1 |
5. Взаимное пересечение поверхностей вращения.
Линией пересечения
В более общих случаях проекции линии пересечения строятся по точкам, определяемым с помощью поверхностей-посредников.
Идею способа можно кратко записать так:
( A)(Ai l)[Ai=( i ) ( i )]
Любая i-я точка линии пересечения поверхностей и определяется как общая точка пересечения линий пересечения i-й поверхности-посредника ( i) с поверхностями и .
В качестве поверхностей-посредников выбирают такие, которые дают простые линии пересечения - прямые или окружности. Поэтому в качестве поверхностей-посредников выбирают либо сферы, либо плоскости.
Линии пересечения имеют характерные точки:
Характерные точки позволяют определять границы изменения положений поверхностей-посредников.
Определение линий пересечения поверхностей вращения с помощью секущих плоскостей.
Вспомогательные плоскости частного положения применяются в тех случаях, если соответствующие оси поверхностей либо параллельны, либо перпендикулярны к тем или иным плоскостям проекций.
Пример 1. Дано: 2 цилиндра вращения, у которых оси скрещиваются в пространстве. Ось большого цилиндра перпендикулярна к W, малого - к H.
Нужно: Построить линию пересечения.
Отметим точки, не требующие специального построения. Введём плоскости-посредники P1, P2, P3, P4 V (так, чтобы оба цилиндра пересекались с ними по своим образующим).
На профильной плоскости проекций мы видим, что точки:
Рис.1 |
Рис.2 |
Если цилиндры разных диаметров, но оси пересекаются, то получим совпадение видимой и невидимой частей линии пересечения. d < D.
Рис.3 |
Рис.4 |
Если d=D, то фронтальная проекция линии пересечения представляет собой две пересекающиеся прямые, которые являются фронтальными проекциями плоских кривых - эллипсов.
Рис.5 |
Рис.6 |
Пример 2. Дано: Прямой круговой усечённый конус, расположенный вертикально (на H) и цилиндр, расположенный горизонтально (на W). Оси цилиндра и конуса пересекаются в точке O.
Нужно: Построить их линию пересечения.
Как и в предыдущем примере, определяем сначала характерные точки линии пересечения:
Рис.7 |
Рис.8 |
Определение линии
пересечения поверхностей с помощью
вспомогательных сферических
Вспомогательные сферические поверхности применяются, когда оси поверхностей вращения пересекаются друг с другом и параллельны какой-либо плоскости проекций.
Метод основывается на известном
свойстве:
"Две любые соосные поверхности вращения
пересекаются по окружностям, проходящим
через точки пересечения меридианов поверхностей".
Плоскости окружностей сечения
перпендикулярны оси
В качестве вспомогательной секущей поверхности вращения используют сферу, т.к. её просто вычертить.
Рис.9 |
Рис.10 |
Пример. Дано: 2 поверхности вращения - цилиндр и конус, оси которых пересекаются и параллельны плоскости проекций V.
Нужно: Найти (построить) линию пересечения этих поверхностей вращения с помощью вспомогательных концентрических сфер.
Точки, наиболее удалённые от оснований малого конуса, найдём, вписав сферу в большой конус.
Проекции линии пересечения
представляют собой кривые 2-го порядка.
Это следует из теоремы:
"Если пересекающиеся поверхности 2-го
порядка имеют общую плоскость симметрии,
то линии их пересечения проецируются
на эту плоскость (или параллельную ей)
в кривую 2-го порядка."
Рис.11 |
|