Применение информационных технологий при изучении случайных процессов

Автор работы: Пользователь скрыл имя, 02 Июня 2015 в 20:08, дипломная работа

Краткое описание

Современное развитие науки характеризуется потребностью сложного изучения всевозможных сложных процессов и явлений – физических, химических, биологических, экономических, социальных и других. Происходит значительное увеличение темпов математизации и расширение ее области действия. Теории математики широко применяются в других науках, казалось бы совершенно от нее далеких – лингвистике, юриспруденции. Это вызвано естественным процессом развития научного знания, который потребовал привлечения нового и более совершенного математического аппарата, проявлением новых разделов математики, а также кибернетики, вычислительной техники и так далее, что значительно увеличило возможности ее применения.
Более точное математическое описание процессов и явлений, вызванное потребностями современной науки, приводит к появлению сложных систем интегральных, дифференциальных, интегральных, трансцендентных уравнений и неравенств, которые не удается решить аналитическими методами в явном виде. Для решения таких задач приходится прибегать к вычислительным алгоритмам, использовать какие-либо бесконечные процессы, сходящиеся к конечному результату. Приближенное решение задачи получается при выполнении определенного числа шагов.

Содержание

Список обозначений ко всей выпускной работе 3
Реферат на тему «Применение информационных технологий при изучении случайных процессов 4
Введение 4
Глава 1. Обзор литературы 5
Глава 2. Возможности математических пакетов для исследования случайных процессов 6
Глава 3. Примеры использования математических пакетов при исследовании случайных процессов 9
Глава 4. Обсуждение результатов 17
Заключение 17
Список литературы к реферату 18
Предметный указатель к реферату 19
Интернет ресурсы в предметной области исследования 20
Действующий личный сайт в WWW 21
Граф научных интересов 22
Список литературы к выпускной работе 23

Вложенные файлы: 1 файл

finishW.doc

— 312.50 Кб (Скачать файл)

 

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

 

 

 

 

 

 

 

 

 

 

 

Выпускная работа по 
«Основам информационных технологий»

 

 

 

 

 

 

 

Магистрант

кафедры функционального анализа

Чайковская Татьяна Владимировна 

Руководители:

доцент Яблонский Олег Леонидович,

ст. преподаватель Кожич Павел Павлович

 

 

 

 

 

 

Минск – 2008 г.

 

Оглавление

Список обозначений ко всей выпускной работе

ИТ    Информационные технологии

ЭВМ    Электронная вычислительная машина

 

Реферат на тему «Применение информационных технологий при изучении случайных процессов

Введение

Современное развитие науки характеризуется потребностью сложного изучения всевозможных сложных процессов и явлений – физических, химических, биологических, экономических, социальных и других. Происходит значительное увеличение темпов математизации и расширение ее области действия. Теории математики широко применяются в других науках, казалось бы совершенно от нее далеких – лингвистике, юриспруденции. Это вызвано естественным процессом развития научного знания, который потребовал привлечения нового и более совершенного математического аппарата, проявлением новых разделов математики, а также кибернетики, вычислительной техники и так далее, что значительно увеличило возможности ее применения.

Более точное математическое описание процессов и явлений, вызванное потребностями современной науки, приводит к появлению сложных систем интегральных, дифференциальных, интегральных, трансцендентных уравнений и неравенств, которые не удается решить аналитическими методами в явном виде. Для решения таких задач приходится прибегать к вычислительным алгоритмам, использовать какие-либо бесконечные процессы, сходящиеся к конечному результату. Приближенное решение задачи получается при выполнении определенного числа шагов.

Развитие ЭВМ стимулировало более интенсивное развитие вычислительных методов, создало предпосылки решения сложных задач науки, техники, экономики. Широкое применение при решении таких задач получили методы прикладной математики и математического моделирования.

В настоящее время прикладная математика и ЭВМ являются одним из определяющих факторов научно-технического прогресса. Они способствуют ускорению развития ведущих отраслей народного хозяйства, открывают принципиально новые возможности моделирования и проектирования сложных систем с выбором оптимальных параметров технологических процессов.

Двумя основными задачами, относящимися к компьютерному изучению случайных процессов, являются моделирование случайных процессов и нахождение характеристик случайного процесса по выборке данных. Выполнение обоих этих задач без использования специализированных пакетов является очень трудоемким, а иногда даже и невозможным. Первая  из задач часто требует от используемого пакета только наличия функций генерации случайной величины по указанному закону распределения и графических инструментов для визуализации результатов, вторая же задача часто требует наличия большого количества библиотек с реализованными алгоритмами анализа данных. И целью этой работы является изучение проблемы выбора различных пакетов для изучения случайных процессов.

Глава 1. Обзор литературы

Одной из наиболее интересных книг по компьютерному изучению случайных процессов является книга Тюрина Ю.Н. и  Макарова А.А.  “Статистический анализ данных на компьютере“. Эта книга является учебным пособием по анализу данных и статистике, рассчитанным на прикладных специалистов, менеджеров и студентов.  В ней излагаются основные сведения, необходимые на практике для анализа данных (в том числе анализа временных рядов), на наглядных примерах рассматриваются основные постановки задач и методы их решения с использованием популярных статистических пакетов STADIA, SPSS и Эвриста. В приложении дается обзор других программных средств для анализа данных. Большое внимание в книге уделено средствам анализа временных рядов и другим методам, часто используемым в прикладных задачах.

Из более специализированных книг можно отметить много других книг. “Компьютерное моделирование физических процессов с использованием MATLAB” авторов Коткина Г.Л. и Черкасского В.С.  является хорошим руководством для изучения случайных процессов в среде Matlab.

 “SPSS 15: профессиональный статистический анализ данных” А. Наследова представляет собой практическое руководство по анализу данных с помощью мощной и популярной программы статистической обработки информации - SPSS версии 15. В издании подробно описываются основы работы с пакетом SPSS, рассматривается большинство методов обработки и анализа данных, а также способов табличного и графического представления полученных результатов. Материал книги организован таким образом, чтобы удовлетворить запросы как новичка, впервые приступающего к анализу данных на компьютере, так и опытного исследователя, желающего воспользоваться самыми современными методами. Основное содержание глав составляют пошаговые инструкции по реализации различных видов математико-статистического анализа в SPSS. Особое внимание уделяется получаемым результатам и их интерпретации. В конце книги приведен глоссарий, содержащий определения большинства статистических терминов. Издание адресовано исследователям в области статистики, маркетинга, социологии, психологии, а также широкому кругу читателей, желающих воспользоваться программой SPSS для профессионального анализа данных.

Не менее полезным при изучении случайных процессов будет и общее ознакомление с возможностями различных математических пакетов, для этого можно ознакомиться со следующими книгами:

  • Mathematica 5.1/5.2/6 в математических и научно-технических расчетах, Дьяконов В.П.
  • MATLAB R2006/2007/2008 + Simulink 5/6/7. Основы применения, 
    Дьяконов В.П.
  • Mathematica. Практический курс с примерами решения прикладных задач, Васильев А.Н
  • Прикладная математика в системе MATHCAD, Охорзин В.А.

В учебном пособии представляются сведения об основных численных алгоритмах, применяемых в моделировании и оптимизации, также она может помочь в приобретении практических навыков в решении задач. 
Программы системы MATHCAD позволят студентам выполнять расчеты с помощью так называемых «живых» формул — формул, в которые можно подставить свои данные и немедленно получить результат.

Глава 2. Возможности математических пакетов для исследования случайных процессов

Решение задачи статистического анализа случайных процессов, позволяющее сделать вывод о характере исследуемых данных, возможно с применением большого числа алгоритмов с помощью распространенных сегодня автоматизированных систем. Оно сводится к определению некоторого числа различных характеристик, которое варьируется от задачи к задаче и определяется спецификой предметной области.

Методы, используемые при анализе этих характеристик можно условно разделить на две группы: цифровые, связанные с численным получением решения и аналитические, основанные на построении зависимостей, формул или рядов. Аналитические решения обладают рядом преимуществ, включающих возможность исследования влияния физических параметров, начальных и конечных условий на характер решения. Результаты аналитических решений способствуют разработке адекватных математических моделей, они более информативны, устойчивы, обладают возможностью вычисления значения в любой точке с заданной точностью, не прибегая к вычислениям в других точках. Недостатки подобных решений заключаются в том, что на практике обрабатываемые данные принимаются в виде рядов, особенно это касается случайных процессов, поэтому получение аналитических выражений для данных или их характеристик связано с вычислительными и материальными затратами. Численные решения универсальны, применяются тогда, когда аналитическое решение невозможно, а высокая производительность современных вычислительных комплексов компенсирует их низкое быстродействие. Однако появление различных неустойчивостей, сложность использования результатов расчета, накопление ошибок округления существенно снижает ценность численных выражений.

Комбинирование указанных методов является очевидным и результативным шагом при анализе больших информационных массивов, включая случайные процессы. Оно позволяет повысить оперативность и объединить достоинства обоих методов, ликвидировав часть недостатков. Существуют подходы, основанные на аналитическом описании цифровых массивов с их последующей обработкой. При этом на подобное решение накладываются следующие требования: обеспечение заданной точности описания более простым аналитическим выражением, адаптивность аналитического описания к особенностям каждого сигнала, унифицированность структуры описания независимо от природы и особенностей сигнала, возможность реализации метода в отсутствие априорной информации о сигнале. Однако более преимущественным представляется подход, основанный на численном анализе информационных массивов, случайных процессов, заключающемся в определении функциональных характеристик, например характеристик взаимосвязи, с их дальнейшей аналитической обработкой. Таким образом, удается избежать существенных ошибок при выборе модели выражения, метода и алгоритма аппроксимации, получить априорную информацию об исследуемых процессах и в конечном итоге снять или уменьшить важность соблюдения указанных выше ограничений.

Итак, задача аппроксимативного анализа функциональных характеристик случайных процессов сводится к их численному определению и получению аналитического выражения характеристики. Отметим, что численное решение задачи важно при отсутствии информации об исследуемых процессах. В случае, когда известны какие-либо характеристики, например характеристика взаимосвязи двух процессов – взаимная корреляционная функция, и точность аналитического выражения удовлетворяет исследователя, возможно построение других аналитических характеристик на базе имеющейся информации, например, определение спектральной плотности мощности с использованием преобразования Фурье. Подобные алгоритмы могут быть автоматизированы с помощью известных математических систем, или путем реализации собственной автоматизированной системы.

В настоящий момент существует большое число современных математических систем обработки статистической информации, в составе которых имеются как стандартные функции численной обработки данных, так и средства получения аналитических выражений для функциональных характеристик. Для сравнения современных математических систем необходимо провести их классификацию и определить критерии выбора. При этом необходимо учитывать, что статистическая обработка данных обычно производится специалистом предметной области, не знакомым с нюансами анализа случайных процессов, и хотелось бы, чтобы она не требовала программирования качественно новых алгоритмов.

Навигация в пространстве современных математических систем достаточно тяжела, если с такими системами, как Mathcad, MATLAB, Mathematica знакомы практически все, то многие другие специализированные статистические системы приобрести достаточно тяжело. Хотя именно такие системы бывают наиболее удобными для решения узко специализированных задач; кроме этого, они разработаны для решения конкретных проблем, например из области прикладной физики, с учетом апробированных методик проведения всего цикла исследований, поэтому с потерей универсальности происходит улучшение качества обработки, в том числе и повышение ее быстродействия. Но такие пакеты часто абсолютно не предназначены для решения научно-исследовательских математических задач.

Статистические пакеты общего назначения отличаются отсутствием прямой ориентации на специфическую предметную область, широким диапазоном статистических методов, дружелюбным интерфейсом пользователей. Специализированные пакеты обычно реализуют методы, используемые в конкретной предметной области. Для анализа временных рядов используются Эвриста, МЕЗОЗАВР, ОЛИМП: СтатЭксперт, ForecastExpert. Такие пакеты содержат достаточно полный набор традиционных методов, а также оригинальные методы и алгоритмы, созданные разработчиками пакета. Их использование целесообразно, когда требуется систематическое решение задач узкой предметной области.

Наилучший выбор статистического пакета зависит от характера решаемых задач, объема и специфики обрабатываемых данных, квалификации пользователей и т.д.

Пакет SAS (Superior software and services) обладает наилучшими возможностями для работы с большими объемами данных. SPSS (Statistical Package for the Social Sciences) удобен для работы с данными сложной структуры. Собственную систему обработки данных можно построить с помощью библиотеки подпрограмм IMSL, содержащую программы на Фортране и Си, которые можно вставить в свою разработку.

С помощью стандартных пакетов можно обработать данные небольших объемов стандартными статистическими методами. Ряд пакетов (STATISTICA, SPSS) обладают возможностью настройки на узкоспециализированную задачу, которая решается регулярно по мере обновления данных. Существуют пакеты, специализированные именно на обработке временных рядов. В некоторых из них производится автоматический подбор модели временного ряда из заданного класса моделей, однако это может привести к излишне усложненным моделям или к ошибкам. Другие пакеты содержат алгоритмы подбора оптимальных моделей, причем имеется широкий набор инструментов предварительного и окончательного анализа данных и возможность их пошагового применения. При этом пользователь сам задает стратегию ряда.

Пакет ЭВРИСТА является одним из лучших специализированных пакетов для анализа  временных рядов. Его функциональные возможности значительно шире стандартных процедур анализа временных рядов универсальных статистических пакетов.

Итак, наиболее распространенные математические системы могут быть разделены на следующие группы:

    • универсальные математические системы (Mathcad, MatLab, Mathematica);
    • системы символьной математики (Derive, Mathematica, Maple, MuPAD);
    • статистические системы (Statistica, SPSS, NCSS (Number Cruncher Statistical System) and PASS, Statgraphics, SYSTAT, SAS);
    • специализированные инструментальные средства (Stadia, Эвриста).

Все рассмотренные системы являются в разной степени мощными средствами статистического анализа, позволяют представлять результаты в численной форме и имеют эффективные средства аппроксимации функциональных характеристик. Однако все рассмотренные системы могут рассматриваться лишь как инструмент для реализации дополнительных алгоритмов и методов, необходимость которых определяется новыми подходами аппроксимативного анализа вероятностных характеристик случайных процессов. В частности, во многих математических системах существуют библиотеки специальных функций, также следует отметить отсутствие разработанных алгоритмов аппроксимации функциональных характеристик ортогональными функциями.

Информация о работе Применение информационных технологий при изучении случайных процессов