Автор работы: Пользователь скрыл имя, 24 Мая 2013 в 02:33, реферат
Числа первого десятка и действия с ними изучаются в течение первого года обучения. Учащиеся знакомятся с каждым числом первого десятка в отдельности. Изучается образование каждого числа, обозначение его цифрой, счет в пределах этого числа, соотношение предметной совокупности, определяется место числа в натуральном ряду чисел. Числа сравниваются, рассматривается их состав, вводятся действия сложения и вычитания, отрезок числового ряда, решаются простые арифметические задачи на нахождение суммы и остатка.
1.Общие представления – 3
2.Наглядные пособия, используемые при изучении чисел первого десятка в первом классе – 4
3.Получение чисел – 5
4.Обозначение числа цифрой и письмо цифр – 6
5.Соотношение количества, числа и цифры – 7
6.Место числа в числовом ряду – 8
7.Счёт в прямой и обратной последовательности – 9
8.Сравнение предметных совокупностей. Сравнение чисел – 12
9.Обучение сложению и вычитанию в пределах десяти – 14
10.Список использованной литературы - 19
«Сосчитаем,
сколько тетрадей в стопке (7 тетрадей).
Сколько нужно для них обложек?
«Нарисуйте 4 кружочка. Возьмите столько же треугольников. Сколько треугольников надо взять?»
Затем учащиеся сравнивают числа, абстрагируясь от конкретных множеств: «Какое число больше: 5 или 6? Сколько лишних единиц в числе б? Сколько их недостает в числе 5? Что нужно сделать, чтобы уравнять числа?»
Учащиеся должны хорошо усвоить, что все числа, предшествующие данному (те, которые стоят в числовом ряду перед данным числом, раньше его, ближе к началу числового ряда), меньше данного, а все последующие числа (те, которые стоят после данного в числовом ряду, дальше от начала) больше данного. Использование иллюстративной таблицы с изображением множеств, а также «числовой лестницы» поможет учащимся в сравнении чисел известного им отрезка числового ряда. Для закрепления сравнения чисел могут быть использованы задания: «Сосчитай, сколько здесь синих шаров. Покажи цифрой. Отсчитай красных шаров больше. Покажи, сколько красных шаров ты отсчитал», «Какое число больше (меньше)?», Сколько лишних единиц в большем числе?» (Аналогичное упражнение с использованием понятий «столько же», «меньше».) Подобные упражнения можно проводить с хлопками, прыжками и т. д.: Покажи число три», «Покажи числа, большие числа 3», «Покажи столько же пальчиков. Покажи пальчиков больше (меньше)».
Число 10, которым заканчивается изучение первого десятка, отличается от ранее изученных чисел. Учащимся 1-го класса можно дать только один способ образования этого числа: 9+1. Число 10 обозначается не одной, а двумя цифрами 1 и 0, и уместно дать учащимся термины однозначные числа и двузначые числа. Однозначные числа записываются одной цифрой. Двузначное число 10 записано двумя цифрами. Какой-либо четкой дифференциации однозначных и двузначных чисел провести при том нельзя, так как учащиеся знают только одно двузначное число. Однако эти термины ввести следует. Необходимо при этом закрепить понятия число и цифра.
Десять единиц дети учатся объединять в один десяток, пользуясь рассыпными палочками и связкой палочек, 10 косточками на первой проволоке счетов и 1 косточкой (одним десятком) на второй, проволоке; работая с абаком, дети заменяют 10 кружков в первом столбце, обозначающем разряд единиц, одним кружком во втором столбце, 10 монет по одной копейке — одной монетой в 10 копеек, 10 квадратиков — полоской, на которой они укладываются в ряд, и т. д. На многочисленных упражнениях с использованием разнообразных наглядных пособий и дидактического материала следует отдифференцировать понятия десять единиц и один десяток.
Обучение сложению и вычитанию в пределах 10
С арифметическими действиями учащиеся знакомятся сразу же после изучения числа 2. Изучение каждого из чисел первого десятка (кроме 1) завершается изучением действий сложения и вычитания в пределах этого числа. Действия сложения и вычитания изучаются параллельно.
Учащиеся знакомятся со знаками сложения — плюсом (+) вычитания — минусом (—) и знаком равенства — равно ( = ).
При изучении данной темы учащиеся должны овладеть вычислительными приемами, получить прочные вычислительные навыки, заучить результаты сложения и вычитания в пределах 10, а также состав чисел первого десятка, узнавать и показывать компоненты и результаты двух арифметических действий (сложения и вычитания) и понимать их названия в речи учителя.
В
основе сложения и вычитания в
пределах 10 лежат операции с предметными
совокупностями и некоторые вычислительные
приемы. Изучение состояния знаний
учащихся, поступивших в 1-й класс
вспомогательной школы, показывает,
что большинство из них либо вообще
не имеют представления о
Запись примеров идет на доске и в тетрадях. Учащиеся учатся читать пример: «К одному прибавить один, получится два». На этом же уроке учащиеся знакомятся с решением и записью примеров на вычитание. Пример читают так: «От двух отнять один, получится (останется) один».
После знакомства с числом 3 дети учатся решать примеры вида 2+1, 1+2, 3—1, 3—2. Чтобы решить пример 2+1, надо отсчитать 2 предмета (2 красных круга), а потом отсчитать еще 1 предмет (зеленый круг), соединить их, пересчитать и записать ответ. Учитель обращает внимание учащихся на то, что когда прибавляют, то становится больше, чем было.
При вычитании 3—2 ученик должен взять 3 предмета, отсчитать (удалить) 2, пересчитать оставшиеся предметы и записать ответ. Учитель обращает внимание на то, что когда вычитают, то становится меньше, чем было.
Одновременно на этом же этапе организуются наблюдения учащихся над свойством сложения. Учитель показывает, что если к двум красным кругам прибавить один зеленый, то получится три. И наоборот: если к одному зеленому кругу прибавить два разных, тоже получится три круга. Учащиеся наблюдают переместительное свойство сложения. Учитель обращает внимание на перестановку групп предметов, чисел в примерах и неизменность при этом результата. Учащиеся подводятся к доступным им обобщениям.
По мере овладения учащимися натуральной последовательностью чисел и свойством этого ряда (каждое число меньше следующего за ним на единицу и больше стоящего перед ним на единицу) нужно знакомить их и с приемом сложения и вычитания, опирающимся на это свойство натурального ряда чисел). Дети учатся этому приему прибавлять и вычитать единицу из числа, т. е. присчитывать и отсчитывать по 1.
Пособием для овладения этим приемом должен быть натуральный ряд чисел от 1 до числа, которое учащиеся изучают. (Числовой ряд постоянно должен находиться на наборном полотне в классе и на партах учащихся.) Например, надо решить: 3+1. Учитель показывает цифру 3 в числовом ряду и просит найти число на 1 больше. Это следующее в числовом ряду число 4, значит, 3+1=4. Пример 3—1 решается так: находим число 3, число на единицу меньше — это число, которое стоит перед числом 3, т. е. число 2. Значит, 3—1=2. Дети успешно пользуются табличкой числового ряда, которая помогает овладеть вычислительным приемом без опоры на конкретный материал.
Когда учащиеся научились прибавлять и вычитать по 1, надо учить их прибавлять по 2: к четырем прибавить 2. Ученик ставит палец на число 4 в числовом ряду, прибавляет 1, получилось 5, еще прибавляет 1, получилось 6. Палец ученика скользит по числовому ряду.
С
первых уроков математики целесообразно
обучать комментировать свою деятельность
с предметами и числами. Сначала
учитель сам комментирует производимые
им совместно с учениками
Переходным этапом от операций над конкретными множествами к действиям над числами является знакомство учащихся (при выполнении сложения и вычитания) с приемом присчитывания и отсчитывания нескольких единиц.
При использовании приема присчитывания учащиеся пересчитывают первое множество, запоминают это число, к нему по одному присчитывают элементы второго множества и .сразу говорят сумму. Например: 2+2=? Учитель говорит: «Сосчитаем яблоки в корзине. Их 2. Нужно прибавить к ним еще 2 яблока. Узнаем, сколько всего яблок в корзине. Считать будем так: к двум прибавим еще 1, будет 3 и еще 1, будет 4. В корзине 4 яблока, значит 2+2=4. Проверим, что в корзине 4 яблока (пересчитаем)». Затем учащиеся не пересчитывают первое множество, а сразу называют число. В коробке 3 карандаша. Прибавим еще 2 карандаша. Считаем так: к трем прибавим 1, будет 4, прибавим 1, будет 5.
Когда учащиеся овладели приемом присчитывания, учитель знакомит их с приемом отсчитывания: 5—2=? На наборном полотне выставляются 5 кругов. Нужно отнять 2 круга. Отсчитываем 1, осталось 4, отсчитываем еще 1, осталось 3, значит, 5—2=3. Если приемом присчитывания ученики 1-го класса овладевают довольно быстро, то приемом отсчитывания — намного медленнее. Особенно это относится к ученикам со значительной степенью умственной отсталости. Трудность состоит в том, что прием отсчитывания основан на хорошем знании обратного счета, а обратный счет для многих учащихся 1-го класса труден. Кроме того, ученики плохо запоминают, сколько нужно отнять, сколько уже отняли, сколько еще надо отнять.
При изучении каждого числа первого десятка учащиеся получают представления и о составе этих чисел. Состав чисел усваивается учащимися при объединении двух предметных совокупностей, а также разложении их на две группы и определении количества предметов в каждой группе. Например, при изучении числа 5 учащиеся отсчитывают 5 предметов и раскладывают их на две группы, пересчитывают предметы в каждой группе и обозначают их количество соответствующей цифрой. Затем группы предметов меняют местами. На наборном полотне составляется таблица (рис.).
При
изучении состава чисел первого
десятка необходимо использовать как
можно больше различных предметов.
Это ускорит запоминание
4=3 + П 4=П+1 4=2+П 4=П+П
При изучении состава числа в качестве дидактического материала необходимо использовать пальцы рук ребенка (это «пособие» всегда налицо). Надо показать ребенку любое число первого десятка на пальцах и показать, как его можно раскладывать на две группы. Например, число 5 — это 4 и 1, 3 и 2.
Для закрепления состава чисел наряду с пальцами надо использовать работу с косточками на первой проволоке счетов. Лучшему запоминанию состава чисел способствуют упражнения с частичным использованием предметных пособий и без них.
Вначале необходимо давать такие упражнения, в которых одно из слагаемых воспринимается детьми наглядно, а второе они отыскивают по представлению. Учитель говорит: «Сосчитайте, сколько грибов я поставлю на наборное полотно». Учитель выставляет грибочки, а ученики хором считают. (Всего 5 грибочков.) «Все закройте глазки, а я сорву несколько грибов. Сколько грибов осталось?» (Дети пересчитывают и говорят результат.) — «Осталось 3 гриба». — «Было 5 грибов. Осталось 3 гриба. Сколько грибов я сорвала?» Учащиеся отвечают. После этого учитель показывает 2 гриба.
Или учитель говорит: «У меня 7 кругов. Сосчитаем их хором. Я разложу их за спиной в две руки. Кто отгадает, как я разложила круги?» Учащиеся называют различные варианты состава числа 7. Кто-то из детей обязательно назовет тот вариант, который у учителя.
Важно научить детей при выполнении действий сложения и вычитания пользоваться приемом, опирающимся на знание состава чисел. Например, надо выполнить действие 3+5=? При этом рассуждения проводятся так: «Из 3 и 5 состоит число 8, значит, 3+5=8». Пример: 8—3=? «Число 8 состоит из 3 и 5. Если от 8 отнять 3, то останется 5, значит, 8—3=5». Пример: 8—5=? «8 состоит из 5 и 3. Если от 8 отнять 5, то останется 3. Значит, 8—5=3». Пользоваться этим вычислительным приемом могут успешно только те учащиеся, которые хорошо знают состав чисел.
Важно систематически повторять с учащимися состав чисел. Например, отсчитать 8 кубиков и разложить их несколько раз в две кучки, а потом записать: 8=4+4, 8=5+3, 8=3+5, 8=2+6, 8=7+1, 8 = 1+7. К концу учебного года учащиеся должны хорошо знать (выучить наизусть) таблицу сложения чисел в пределах 10. Эту таблицу можно составить по постоянному второму слагаемому или по постоянному первому слагаемому.
Очень полезны упражнения на решение четверок примеров на сложение и вычитание с одинаковыми числами: 6+3, 3+6, 9-3, 9-6.
Необходимо сопоставление примеров, определение их взаимосвязи, выявление признаков сходства и различия. Школьники с нарушением интеллекта с большим трудом улавливают связь между сложением и вычитанием. Понимание этой связи достигается только практически. Учитель начинает демонстрацию множеств предметов. К четырем красным кубикам присоединяется 3 зеленых кубика. Кубики пересчитываются. Записывается: 4+3=7. Если из всех кубиков удалить зеленые кубики, останутся красные кубики. Записывается: 7—3=4. Затем, наоборот, из всех кубиков удаляются красные, остаются зеленые. Записывается: 7—4=3.
Необходимо чаще для отыскания ответа при вычитании отсылать учащихся к таблице сложения. Например, при решении примера 7—3 учащиеся должны в таблице сложения отыскать пример 3+4=7. Полезно решать сразу три примера 3+4, 7—3, 7—4, сопоставляя их. По примеру на сложение 5+2=7 учитель также учит детей составлять и решать два примера на вычитание с теми же числами: 7—2, 7—5.
Решение и сопоставление подобных примеров, а впоследствии и составление по одному примеру на сложение других трех, не только способствует осознанию взаимосвязи между действиями и запоминанию табличного сложения и вычитания, но и играет огромную корригирующую роль. Анализ, сравнение будят мысль ребенка, заставляют его сознательно подходить к выполнению действий. Надо помнить о том, что ученик 1-го класса, как бы много подобных упражнений он ни выполнял, не вскроет заложенных в этих примерах зависимостей. Учитель своими заданиями по выделению признаков сходства, различия, организацией наблюдений над изменением компонентов действий способствует активизации мыслительной деятельности, преодолению косности и формализма в знаниях.
В 1-м классе при изучении чисел первого десятка важно обратить внимание учащихся на то, что складывать можно любые и, а вычитать — только из большего числа меньшее, что решить пример вида 3—4 нельзя. Если учитель не обратит внимание умственно отсталых школьников на это, то они допускают ошибки при решении и при составлении примеров на вычитание, вычитают из меньшего числа большее, составляют примеры 5-7=2.
При выполнении действий сложения и вычитания в пределах иного числа вводится решение примеров с отсутствующим компонентом. Его обозначают точками, рамками, знаками вопросов и т. д., например: П+1=3, 4+...=6, ?-2=4, 6-?=2.
Знакомство с нулем проводится после изучения чисел в пределах 5. Подготовка ведется на предметных пособиях, потом на картинках и, наконец, на числах. Например, учащимся предлагается построиться у доски (вызываются 3 человека). «Сколько учеников стоит у доски? — спрашивает учитель. — За парту сядет Надя. Сколько осталось? (Осталось 2 ученика.) За парту сядет Леня. Сколько учеников осталось? (Остался 1 ученик.) Сядет за парту Сережа. Сколько учеников осталось у доски? (Не осталось ни одного ученика.)». Учитель объясняет, что когда не осталось ни одного ученика, то можно сказать, что остался нуль учеников.