Формы работы на уроках математики в процессе решения текстовых задач

Автор работы: Пользователь скрыл имя, 24 Мая 2012 в 14:04, курсовая работа

Краткое описание

Математическое образование играет исключительную роль во всей образовательной структуре. Математика является не только базой естественных наук и экономики, но и важнейшей составляющей интеллектуального развития школьников.
Многие ведущие российские ученые такие, как В.А. Гусев, Г.В. Дорофеев, Н.Б. Истомина, Ю.М. Колягин, Л.Г. Петерсон и другие, отмечают необходимость математического развития младшего школьника в учебной деятельности: «начальный курс математики способствует продвижению ученика в общем развитии, становлению нравственных позиций личности ребенка» [

Содержание

Введение
Глава 1. Формы работы младших школьников на уроках математики
1.1 Урок математики. Содержание урока, его построение. Подготовка учителя к уроку
1.2 Использование различных форм работы младших школьников в процессе решения текстовой задачи
Глава 2. Решение текстовых задач в начальной школе
2.1 Понятие «текстовая задача» и ее структура
2.2 Процесс решения текстовых задач
2.3 Обучение решению задач. Уровни сформированности умений младших школьников решать задачи. Критерии уровней
2.4 Методические приемы, используемые в работе над текстовой задачей в начальной школе
2.5 Примеры использования различных форм работы младших школьников в процессе решения текстовой задачи
Глава 3. Формирование умений младших школьников решать текстовые задачи
3.1 Диагностика уровня сформированности умений младших школьников решать задачи
3.2 Повышение уровня сформированности умений младших школьников решать задачи
3.3 Динамика уровней сформированности умений младших школьников решать задачи
Заключение
Список литературы

Вложенные файлы: 1 файл

диплом .doc

— 449.50 Кб (Скачать файл)


Таблица №7. Динамика уровней сформированности умений решать задачи в контрольном 3-Б классе

 

Уровень сформированности умения решать задачи

Диагностирующий этап

Контрольный этап

      Динамика

 

 

Чел.

%

Чел

%

чел.

%

 

Высокий

11

52,4

12

7,1

1

4,7

 

Средний

8

38,0

9

2,9

1

4,9

 

Низкий

2

9,6

0

0

2

9,6

 

 

 

 

 

 

 

 

 

Диаграмма №3. Динамика уровней сформированности умений решать задачи в экспериментальном 3-А классе

Диаграмма №3. Динамика уровней сформированности умений решать задачи в контрольном 3-Б классе

Таким образом, в ходе педагогического эксперимента нами установлено, что в результате систематического сочетания разнообразных форм организации деятельности учащихся на уроках математики при решении задач уровень соответствующих умений у учащихся экспериментального класса существенно возрос. В ходе формирующего этапа эксперимента учащиеся со средним уровнем умений решать текстовые задачи повысили этот уровень и отнесены в группу учащихся с высоким уровнем умения решать задачи. Те учащиеся, которые на диагностирующем этапе вошли в группу с низким уровнем умения решать задачи, в результате нашей работы повысили уровень своих умений и перешли в группу со средним уровнем умений решать задачи.

Аналогичные изменения произошли в контрольном классе. Однако в количественном отношении динамика выражена не столь резко, как в контрольном классе.

Мы считаем, что достигнутые в экспериментальном классе изменения в уровнях сформированности умений учащихся решать текстовые задачи произошли вследствие варьирования на уроках коллективной, групповой и индивидуальной форм работы младших школьников при решении задач.

Ильинская Е.В., учитель контрольного класса, не ставила своей целью повышение уровня умений школьников решать задачи. Более актуальной для учащихся класса она считает развитие свойств памяти школьников. Для достижения поставленной цели учителем организованы внеклассные занятия. Повышение уровня сформированности умений решать задачи у учащихся 3 «Б» класса Ильинская Е.В. объясняет систематическим включением задач в уроки в соответствии с материалами учебника и требованиями образовательной программы.

Таким образом, выдвинутая гипотеза «если на уроках математики систематически применять разнообразные формы работы с учащимися при обучении решению задач, то уровень их умения решать текстовые задачи повысится», подтверждена.

 

 

 

 

Заключение

Современная концепция начального образования школьников ориентирована на получение новых знаний в сочетании со всесторонним развитием личностной сферы ребенка. Все модели обучения имеют общую цель - развитие личности учащегося, формирование у него желания и умения учиться: «Миссия новой системы образования четко соотносится и с важнейшими социальными эффектами системы образования - это обеспечение социальной и духовной консолидации нации, конкурентоспособности и безопасности личности, общества и государства» [37].

В настоящее время на территории Росси обучение математике в начальных классах ведется по традиционной («Школа России», «Начальная школа ХХI века», «Школа 2100», «Гармония», «Перспективная начальная школа», «Классическая начальная школа», «Планета знаний», «Перспектива») и развивающим (Л.В. Занкова и Д.Б. Эльконина - В.В. Давыдова) системам [38].

Специалистам, работающим в области педагогики, совершенно понятно, что любой - важный, занимательный, интересный научный факт усваивается младшим школьником более глубоко и осознанно, если своевременно демонстрировать обучаемому значимость вновь приобретенных знаний для повседневной жизни. В этом смысле обучение математике в начальной школе связывает теоретическую и практическую составляющие дисциплины посредством системы текстовых задач.

В процессе изучения психолого-педагогической литературы мы установили, что текстовые задачи, включенные в начальный курс математики, призваны решать триединую задачу обучения математике: способствовать усвоению математических знаний, формированию и воспитанию личностных качеств младших школьников, развитию их психических процессов. С помощью текстовых задач учитель раскрывает сущность теоретических положений, отрабатывает умения выполнять вычислительные приемы, устанавливает межпредметные связи и демонстрирует приложение математических знаний и умений к решению жизненных задач.

Текстовые задачи, включенные в начальный курс математики, классифицируются по различным основаниям. Это позволяет с методической точки зрения так построить учебно-воспитательный процесс, что практически любой младший школьник имеет возможность усвоить связи, правила и законы, лежащие в основе выбора действий для решения задачи.

В зависимости от возраста учащихся на каждом уроке математики решаются типовые текстовые задачи (нахождение целого и части; умножение и деление суммы на число; задачи с пропорциональными величинами и т.д.), в результате чего можно говорить об отработке достаточно прочных умений и навыков школьников в решении этих видов задач.

Однако, по свидетельству учителей начальной школы, не у всех младших школьников процесс обучения решению задач проходит без затруднений. Возникновение проблем в усвоении учебного материала может быть вызвано целым рядом факторов личностного или социального характера. В результате коллектив класса разделяется на группы в зависимости от уровня сформированности умений, в частности, решать текстовые задачи.

С целью формирования и дальнейшей отработки умений и навыков, предусмотренных программой, учитель использует широкий арсенал методических средств управления учебно-воспитательным процессом. Школьников знакомят

· с различными способами наглядного представления текстовой задачи,

· с различными способами решения основных видов типовых задач,

· с различными приемами выполнения каждого из этапов решения задачи и пр.

Для работы над задачей на уроках используют различные методы обучения. Но, как показывают исследования психологов и педагогов, а также наблюдения учителей, один и тот же метод обучения не гарантирует одинакового уровня усвоения материала учащимися целого класса. В более полной мере учесть индивидуальные особенности младших школьников может помочь сочетание на уроках различных форм организации деятельности учащихся: коллективной, групповой и индивидуальной.

Каждая из этих форм имеет определенные преимущества по сравнению с остальными, но и не является универсальной. Применение одних форм позволяют раскрыться индивидуальному потенциалу учащегося, применение других открывают возможности для взаимного обучения между школьниками.

В период преддипломной практики мы исследовали динамику уровней развития умений младших школьников решать текстовые задачи через сочетание различных форм работы при решении задач.

На констатирующем этапе эксперимента было установлено, что в экспериментальном и контрольном классах присутствуют учащиеся с соответственно высоким, средним и низким уровнями сформированности умения решать задачи. Работа на формирующем этапе была нацелена на варьирование форм организации деятельности учащихся при решении задач на уроке. С этой целью нами были разработаны планы уроков, мультимедийные презентации, плакаты и индивидуальные дидактические материалы (карточки с дифференцированными заданиями). На контрольном этапе нами была изучена динамика уровней сформированности умений младших школьников решать текстовые задачи. В результате эксперимента установлено, что за период практики по вопросам, предусмотренным программой, уровень учащихся обоих классов решать текстовые задачи повысился.

Мы считаем, что полученный результат в экспериментальном классе обусловлен сочетанием форм работы учащихся при решении задач и использованием различных методических приемов реализации этих форм. По мнению Ильинской Елены Вячеславовны, учителя контрольного класса, повышение уровня умений ее учащихся решать задачи обусловлено проведением серии внеклассных занятий.

Таким образом, мы можем сделать вывод о том, что сочетание коллективной, групповой и индивидуальной форм работы младших школьников на уроке при решении задач действительно позволяет повысить уровень соответствующих умений учащихся. Тем самым гипотеза, сформулированная во введении к работе, подтверждена.

Полученный в ходе исследования результат позволяет нам сформулировать ряд рекомендаций для учителей начальной школы, которые заинтересованы в повышении уровня сформированности умений младших школьников решать текстовые задачи.

1. Прежде чем начать целенаправленную работу по повышению уровня сформированности умений младших школьников решать задачи, всесторонне оцените потенциальные возможности Ваших учащихся, изучите характер трудностей, которые они испытывают при решении задач, расспросите родителей школьников о том, в какой помощи, по их мнению, нуждается ребенок.

2. Изучите текстовые задачи, которые включены в учебник математики, по которому происходит обучение в классе. Классифицируйте эти задачи (например, на стандартные - по известным видам, и нестандартные).

3. В любой этап урока включайте устные упражнения, с помощью которых повторяются основания для выбора действий при решении задач. Целесообразно некоторые из задач предлагать не в словесной форме, а в виде условного ее изображения (краткой записи, таблицы, чертежа, рисунка и т.п.). Желательно, чтобы суть выполняемых упражнений постоянно видоизменялась (решить задачу, составить условие по модели или по решению, дополнить условие, убрать лишние данные, найти ошибки в рассуждениях, найти иной способ решения и т.п.). Кроме численных данных, на определенной ступени обучения допустимы буквенные. Это позволит учащимся более глубоко осознать изучаемые правила, связи между величинами и другие теоретические положения.

4. При планировании уроков не забывайте о ведущей роли учителя на занятии. Имейте в виду, что составленный план урока не всегда удается реализовать в полной мере. Еще на этапе подготовки урока предусмотрите альтернативную деятельность учащихся. Если запланированный ход урока не удалось реализовать, внимательно проанализируйте причины, которые помешали организовать работу в соответствии с Вашим планом. Учтите свои недостатки при планировании работы в дальнейшем.

5. При разработке плана урока разделите упражнения, которые будут выполнять школьники, на группы в соответствии с целесообразной формой организации деятельности учащихся. Убедитесь в том, что в выборе форм работы над задачей в Вашем плане нет однообразия. Формы деятельности школьников должны периодически сменять друг друга.

6. Помните, что при одной и той же форме организации деятельности учащихся при решении задачи возможны разнообразные методические подходы. Старайтесь строить учебную деятельность младших школьников таким образом, чтобы максимально использовать современные методы обучения, включайте в свои уроки проблемные ситуации, подталкивайте учащихся к активной мыслительной деятельности. Вступайте с учащимися в дискуссии, предлагайте школьникам выступать в роли учителя по отношению к одноклассникам.

7. Не бойтесь вести работу над задачей на достаточно высоком уровне сложности. Исследованиями психологов установлено, что хорошо успевающий по предмету учащийся при заниженных требованиях рано или поздно снижает уровень учебной мотивации. В то же время слабоуспевающий школьник, ориентируясь на своих более успешных в учебе одноклассников, в условиях высоких требований стремится в меру своих сил овладеть программными вопросами.

8. Используйте в своей работе современные методические материалы: электронные учебные пособия, мультимедийные сопровождения к урокам, разработки уроков в сети Internet и т.п.

9. При организации коллективной (фронтальной) работы старайтесь следить за тем, чтобы в активную деятельность были включены все учащиеся класса. Как правило, более коммуникабельные младшие школьники активны при решении задачи. Они отвечают на вопросы учителя, анализируют ответы одноклассников, формулируют вопросы к задаче, составляют план решения. Особого внимания требуют учащиеся, которые редко проявляют инициативу в коллективе. Включить таких школьников в работу можно специально адресованными вопросами, предложением продолжить начатую мысль, просьбой оценить услышанное и т.д. Помните, что одобрение успехов таких учащихся чрезвычайно важно для них. При необходимости дать негативную оценку работе этих учащихся постарайтесь подобрать такие слова, чтобы не унизить человеческое достоинство школьника, не спровоцировать его на замкнутость в коллективе.

Информация о работе Формы работы на уроках математики в процессе решения текстовых задач