Формы работы на уроках математики в процессе решения текстовых задач

Автор работы: Пользователь скрыл имя, 24 Мая 2012 в 14:04, курсовая работа

Краткое описание

Математическое образование играет исключительную роль во всей образовательной структуре. Математика является не только базой естественных наук и экономики, но и важнейшей составляющей интеллектуального развития школьников.
Многие ведущие российские ученые такие, как В.А. Гусев, Г.В. Дорофеев, Н.Б. Истомина, Ю.М. Колягин, Л.Г. Петерсон и другие, отмечают необходимость математического развития младшего школьника в учебной деятельности: «начальный курс математики способствует продвижению ученика в общем развитии, становлению нравственных позиций личности ребенка» [

Содержание

Введение
Глава 1. Формы работы младших школьников на уроках математики
1.1 Урок математики. Содержание урока, его построение. Подготовка учителя к уроку
1.2 Использование различных форм работы младших школьников в процессе решения текстовой задачи
Глава 2. Решение текстовых задач в начальной школе
2.1 Понятие «текстовая задача» и ее структура
2.2 Процесс решения текстовых задач
2.3 Обучение решению задач. Уровни сформированности умений младших школьников решать задачи. Критерии уровней
2.4 Методические приемы, используемые в работе над текстовой задачей в начальной школе
2.5 Примеры использования различных форм работы младших школьников в процессе решения текстовой задачи
Глава 3. Формирование умений младших школьников решать текстовые задачи
3.1 Диагностика уровня сформированности умений младших школьников решать задачи
3.2 Повышение уровня сформированности умений младших школьников решать задачи
3.3 Динамика уровней сформированности умений младших школьников решать задачи
Заключение
Список литературы

Вложенные файлы: 1 файл

диплом .doc

— 449.50 Кб (Скачать файл)

ѕ А вторая? (так как она разъясняет только часть задачи)

ѕ Что в задаче требуется узнать? (сколько гирлянд украшали вход в школу)

После разбора условия задачи учитель вывешивает на доску карточки с выражениями. На оборотной стороне карточек указан порядок действий для решения задачи (см. рисунок №18)

Рис. №18 Карточки с выражениями

Затем учитель объясняет задание:

ѕ Соберите решение задачи из предложенных выражений.

Учащиеся поочередно выходят к доске и, переворачивая карточки с выражениями, убеждаются в правильном выборе порядка действий. При этом учащиеся объясняют, на какой вопрос отвечают каждым выражением и почему выбирают именно такое арифметическое действие (см рисунок №19).

Рис. №19 Схема порядка действий в задаче


Затем учащиеся самостоятельно записывают решение задачи с пояснениями.

Запись должна выглядеть следующим образом:

1) 76 - 16 = 60 (г.) - осталось

2) 60 : 3 = 20 (г.) - украсили стены

3) 60 - 20 = 40 (г.) - пошло на вход в школу

Ответ: 40 гирлянд.

Пока учащиеся оформляют решение задачи в тетрадях, учитель заменяет некоторые карточки.

После того, как школьники оформили решение задачи, учитель опять обращает их внимание на карточки с выражениями и просит найти второй способ решения этой задачи. Учащиеся, как и в прошлый раз, поочередно выходят к доске и проставляют порядок действий, объясняя, на какой вопрос при этом можно ответить (см. рисунок №20).

Рис. №20 Схема порядка действий в задаче

Решение задачи вторым способом выполняется устно.

Урок 69, задача №7.

Цель: повторить основные понятия теории множеств, учить решать задачи разными способами, учить определять истинность или ложность высказываний.

Оборудование: учебник, мультимедийная аппаратура, слайды, карточки с предложениями, карандаши.

Для книг из классной библиотеки Костя сделал рисунок:

Составь несколько высказываний к этому рисунку.

· Сколько всего книг о животных и книг с рассказами в этой библиотеке, если книг с рассказами 45, книг о животных 38, а книг с рассказами о животных 17?

Целью данной работы является закрепление знаний о множестве.

Учитель предлагает учащимся рассмотреть рисунок и назвать множества, которые на нем изображены (книги, рассказы, книги и рассказы о животных).

ѕ Назовите элементы множества:

ь рассказы (Л.Н. Толстой «Филиппок», В.Драгунский «Девочка на шаре» и другие),

ь книги о животных (книга о кошках, В.Бианки «Синичкин календарь», Н.Сладков «Лесные тайнички»),

ь рассказы о животных (Ю.Коринец «Ханг и Чанг», М.Ершова «Котята»)

Учитель показывает на слайде этот же рисунок, но частично раскрашенный (см. рисунок №21):

Рис. №21 Множество книг.

Дети видят, что есть такое множество книг, которое не относится к рассказам, книгам о животных и рассказам о животных. Учитель просит привести примеры такого множества (книга А.В.Волкова «Волшебник Изумрудного города», К.Чуковский «Бармалей», Д.Р.Киплинг «Маугли» и другие)

После изучения рисунка учитель дает задание учащимся составить несколько высказываний к этому рисунку с использованием слов: некоторые, существует, не все, все.

Дети называют свои предложения:

ь все книги о животных - это книги;

ь не все рассказы - это книги;

ь некоторые рассказы - книги;

ь существуют книги - рассказы о животных.

Для индивидуальной работы можно предложить нескольким учащимся карточки со следующим заданием: оценить, верно ли что…

- некоторые книги о животных - это книги (верно);

- все рассказы - книги (неверно);

- все книги о животных являются рассказами (неверно);

- существуют книги не о животных, которые не являются рассказами (верно).

Далее дети читают ниже приведенную задачу.

ѕ Что мы узнали из текста задачи? (книг с рассказами 45, книг о животных 38, а книг с рассказами о животных 17)

Учитель просит учащихся взять простые карандаши в руки и наклонной штриховкой отметить все рассказы. На фоне этой штриховки отметить число 45. Затем, изменив наклон штриховки, отметить все книги о животных, отметить на этом фоне число 38.

ѕ Что заметили? (на рисунке не два, а три вида штриховки, есть штриховка «клеточкой»)

ѕ Обведите яркой линией эту область. Какие книги в ней содержатся? (рассказы о животных).

ѕ Сколько их, запишите. (внутри области учащиеся записывают число 17)

ѕ Что нас просят узнать? (сколько всего книг о животных и книг с рассказами в этой библиотеке)

ѕ Что мы будем узнавать в первую очередь? (сколько всего книг содержится во множествах, отмеченных наклонной штриховкой)

ѕ Какое действие мы будем при этом выполнять? (сложение, так как мы будем узнавать, сколько книг всего)

ѕ Что мы можем найти после этого? (сколько книг о животных и книг с рассказами в этой библиотеке)

ѕ Как мы это определим? (из всех книг вычтем книги с рассказами о животных)

После разбора задачи ученики самостоятельно записывают решение в тетради. Оно должно выглядеть следующим образом:

1) 45 + 38 = 83 (кн.) - всего в библиотеке

2) 83 - 17 = 66 (кн.) - о животных и книг с рассказами

Ответ: 66 книг.

При выполнении этого задания можно провести индивидуальную работу для слабоуспевающих учащихся. Им раздаются карточки, в которых предложены другие способы решения этой задачи.

Например:

Карточка №1.

Задание: Найди на рисунке множество, в котором книг содержится 45 - 17. Закрась это множество синим цветом. Обведи красным карандашом множество, в котором книг содержится (45 - 17) + 38.

Карточка №2.

Задание: Найди на рисунке множество, в котором книг содержится 38 - 17. Закрась это множество синим карандашом. Обведи красным карандашом множество, в котором книг содержится (38 - 17) +45.

Карточка №3.


Задание: раскрась картинку всеми имеющимися способами. Реши задачу по действиям с пояснениями.

В качестве домашнего индивидуального задания можно предложить учащимся составить похожую задачу о предметах домашнего обихода, оформить рисунок.

Урок 70, задача №8 б)

Цель: повторить связи между пропорциональными величинами, учить решать задачи разными способами.

Оборудование: учебник,

Коля и Мишка варили кашу. Этой кашей они заполнили 2 кастрюли одинакового объема и 6 банок такого же объема. Сколько литров каши сварили мальчики, если в банки они разлили на 12 литров каши больше, чем в кастрюли?

Учитель предлагает разобрать эту задачу в форме игры. Учащиеся поочередно рассказывают о том, что известно из условия задачи. Побеждает тот, кто назовет данные последним. Также учитель обращает внимание детей, если они этого не сказали, на то, что кастрюли и банки имеют одинаковые вместимости.

ѕ Могли бы мы решить задачу, если бы вместимость посуды была бы разной? Почему? (дети высказывают свою точку зрения с объяснением)

Далее учитель предлагает ученикам объединиться в пары и путем обсуждения найти решение этой задачи.

После этого идет проверка решения задачи.

Один из учеников выходит к доске и, комментируя, чертит схему к задаче (см. рисунок №22):

Рис.№22 Схема к задаче


Другой ученик записывает решение задачи, комментируя его.

В итоге, в тетрадях учащихся должна появиться следующая запись:

1) 6 - 2 = 4 (шт.) - банок больше, чем кастрюль

2) 12 : 4 = 3 (л) - в одной банке или кастрюле

3) 2 + 6 = 8 (шт.) - банок и кастрюль одинаковой вместимости всего

4) 3 8 = 24 (л) - каши сварили мальчики

Ответ: 24 литра.

Для решения задачи другим способом можно организовать работу в малых группах. Для этого необходимо, чтобы учитель заранее приготовил карточки со следующими выражениями: 6 - 2; 12 : 4; 6 : 2; 3 2; 6 3; 6 + 18 и геометрические фигуры шести цветов. Дети поочередно вынимают из коробки по одной геометрической фигуре. Потом они садятся в группы по цветам, выбирают звеньевого и получают карточку с заданием. На этой карточке написано одно из шести выражений, суть задания состоит в том, чтобы дети объяснили, на какой вопрос задачи можно с его помощью ответить.

Когда все группы выполнили это задание, к доске выходят звеньевые и становятся в порядке, соответствующем решению задачи. После этого класс записывает решение. Оно выглядит следующим образом:

1) 6 - 2 = 4 (шт.) - банок больше, чем кастрюль

2) 12 : 4 = 3 (л) - в одной банке или кастрюле

3) 6 : 2 = 3 (раза) - банок больше, чем кастрюль

4) 3 2 = 6 (л) - каши в кастрюлях

5) 6 3 = 18 (л) - каши в банках

6) 6 + 18 = 24 (л) - каши сварили всего

Ответ: 24 литра.

Итак, на втором этапе эксперимента мы провели разные формы работ на уроке при решении текстовой задачи. На контрольном этапе мы будем повторно проводить тестирование учащихся с целью определения динамики уровня сформированности умений младших школьников решать текстовые задачи.

3.3 Динамика уровней сформированности умений младших школьников решать задачи

На контрольном этапе было проведено повторное тестирование учащихся экспериментального и контрольного классов с целью определения изменений в уровнях сформированности умений младших школьников решать задачи.

По результатам повторного исследования было выявлено, что в экспериментальном классе высоким уровнем сформированности умений решать задачи обладают 21 человек (87,5%), средним - 3 человека (12,5%). В контрольном классе результаты исследований следующие: высокий уровень - 12 человек (57,1%); средний уровень - 9 человек (42,9%)

Группы учащихся с низким уровнем умения решать задачи в обоих классах отсутствуют.

Соотношение между количеством учащихся высоких и средних уровней сформированности умений решать задачи можно увидеть в ниже приведенной таблице №5 и на диаграмме №2:

Таблица №5. Распределение учащихся экспериментального и контрольного классов в зависимости от уровня сформированности умений решать задачи на контрольном этапе

 

Уровень сформированности умения решать задачи

Экспериментальный класс

Контрольный класс

 

 

Чел.

%

Чел.

%

 

Высокий

21

87,5

12

57,1

 

Средний

3

12,5

9

42,9

 

Низкий

0

0

0

0

 

 

 

 

 

 

 

Диаграмма №2. Соотношение уровней сформированности умений решать задачи на контрольном этапе

По итогам исследования, проведенного на контрольном этапе педагогического эксперимента, можно сказать, что в экспериментальном и контрольном классах на момент окончания эксперимента группы учащихся с низким уровнем сформированности умений решать задачи отсутствуют.

В контрольном классе доля учащихся с высоким уровнем сформированности существенно превосходит долю учащихся со средним уровнем сформированности этих же умений. В контрольном классе разница в количественном составе групп выражена менее резко.

Сравнивая распределение учащихся каждого класса по группам на диагностирующем и контрольном этапе, мы увидим результаты, отображенные в таблицах №6 и №7, а также на диаграммах №3 и №4:

Таблица №6. Динамика уровней сформированности умений решать задачи в экспериментальном 3-А классе

 

Уровень сформированности умения решать задачи

Диагностирующий этап

Контрольный этап

Динамика

 

 

Чел.

%

Чел.

%

ел.

%

 

Высокий

14

58,3

21

7,5

  7

29,2

 

Средний

8

33,3

3

2,5

5

20,8

 

Низкий

2

8,4

0

0

2

8,4

 

 

 

 

 

 

 

 

 

Информация о работе Формы работы на уроках математики в процессе решения текстовых задач