Лекции по «Моделирование процессов и объектов в металлургии»

Автор работы: Пользователь скрыл имя, 01 Апреля 2014 в 19:50, курс лекций

Краткое описание

По мере развития технологии производства цветных металлов повышаются требования к качеству технологического процесса. В переработку поступает все более сложное, комплексное сырье, содержащее помимо основного извлекаемого металла ряд других ценных компонентов. Например, медная руда помимо меди содержит цинк, свинец, железо, серу, золото, серебро и другие примеси. Комплексное использование сырья предполагает извлечение из него всех ценных компонентов, возможное на данном уровне развития технологии.
Чем жестче требования по комплексности использования сырья, тем сложнее технологическая схема, тем больше количество операций в этой схеме, тем больше количество полупродуктов и оборотов в таких схемах. Управлять такими схемами и проектировать такие технологии становится сложнее.

Вложенные файлы: 1 файл

ModelirovanieKonspekt2009.doc

— 786.00 Кб (Скачать файл)

 

 

преобразуем систему дифференциальных уравнений в систему алгебраических. В левой части приращение времени нам известно, поскольку шаг по времени мы выбираем сами. Важно только то, что этот шаг должен быть малым.

В правой части значения всех констант скорости нам также известны из эксперимента, то же следует сказать и о величинах порядков. Подставим в правую часть также значения концентраций всех веществ, воспользовавшись начальными условиями. Каждое из уравнений системы содержит в этом случае лишь одну неизвестную величину – изменение концентрации ΔCi. По сути это изменение концентрации за первый шаг решения, когда время изменяется от нуля (начала химической реакции) до Δt. Изменение концентрации со своим знаком суммируем с начальной концентрацией и определяем концентрацию каждого из веществ на момент окончания первого шага решения.

На следующем шаге решения в правую часть подставим значения концентраций из предыдущего шага решения и вновь получим  ΔCi, но теперь для следующего шага решения, как показано на рисунке.

На каждом шаге решения получаем ординаты, соответствующие изменению концентрации всех веществ, участвующих в реакциях. Геометрическое место точек, являющихся ординатами, даст для каждого из веществ график функции изменения концентрации во времени. Заметим, что в результате численного интегрирования мы не получаем аналитического выражения, задающего изменение концентрации  во времени, ординаты на графике получаются расчетным путем. Однако построение графиков функций изменения концентраций по времени возможно, а вид кривых позволяет сделать ряд выводов, имеющих практический смысл.

Очевидно, что концентрации исходных веществ со временем убывают, поскольку они расходуются в реакции. Не менее очевидно, что концентрации конечных продуктов возрастают.

Поведение промежуточных веществ заслуживает отдельного рассмотрения. Графики концентраций промежуточных веществ имеют максимумы, соответствующие определенной продолжительности реакции. Если промежуточное вещество является целевым продуктом химических реакций, то максимум концентрации соответствует оптимальной продолжительности для получения данного целевого вещества.

Так происходит потому, что в начальный момент химической реакции концентрации исходных веществ велики, а скорость химической реакции с участием исходных веществ пропорциональна их концентрациям. Реакции с участием исходных веществ вначале происходят с большими скоростями. Это означает, что промежуточные вещества образуются также с высокой скоростью.

С другой стороны, скорость разложения промежуточных веществ также пропорциональна их концентрации, и мала вначале. Скорость образования промежуточных веществ больше скорости их разложения, что способствует накоплению промежуточных веществ, их концентрация возрастает.

По мере развития химической реакции уменьшается скорость образования промежуточных веществ и растет скорость их разрушения. Когда величины скоростей становятся одинаковыми, рост концентрации прекращается, в системе наблюдается максимум концентрации промежуточного вещества.

Далее скорость образования промежуточного вещества снижается, поскольку продолжается уменьшение концентраций исходных веществ. Скорость разрушения промежуточного вещества также уменьшается, оставаясь по величине больше скорости образования, а это приводит к расходованию промежуточного вещества в системе и к падению его концентрации.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

;

ТС – оптимальное время для получения вещества С.

Рассмотрим поведение вещества С: в начальный момент времени СС = 0.

k1CB>k2CC0.7

 

 

 

Таким образом, моделирование кинетики позволяет определить образование и расходование всех веществ в системах химических реакций, установить вид функции концентрации в зависимости от времени, в ряде случаев определить оптимальные условия по ведению химической реакции.

 

 

Химические реакции в потоке вещества

 

Многие технологические аппараты работают в непрерывном режиме. Рассмотрим в качестве примера плавильную печь для переработки шихты из медных концентратов и флюсов. Схема такого аппарата приведена ниже на рисунке.

Непрерывный проточный аппарат представляет собой проточный реактор, в котором осуществляется определённый набор химических реакций.


Наличие потоков вещества влияет на условия осуществления химических реакций.

Реальные потоки вещества обладают достаточно сложными свойствами:

  • гидродинамический режим – ламинарный, турбулентный, переходный;
  • число фаз – много- и однофазные.

 

Примером является поток, движущийся по трубе. Скорость движения потока в пределах одного сечения неодинакова: наибольшее значение скорости на оси потока, а вблизи стен за счет торможения потока силами вязкости эта скорость мало отличается от нуля. Однако, если объемный расход среды потока равен Q, а площадь сечения F, нетрудно определить среднюю скорость течения потока, равную Q/F.

 

   Q м3/c


F м2

 

 

Еще больше сложностей возникает при описании многофазных потоков, а реальные потоки как раз чаще всего ими и являются.

В этой связи учитывать свойства реальных потоков при создании математической модели достаточно сложно. Поэтому для создания модели аппаратов проточного типа существует несколько идеализированных моделей течения потоков.

 

1. Модель идеального  вытеснения – такая идеализированная модель потока основана на следующих допущениях (аппаратом такого типа может быть трубчатая обжиговая печь):

    • поток стационарный, объемный расход среды не меняется во времени;


 

dV = F·dl

 

 

    • в таком потоке скорости во всех точках потока одинаковы;
    • элемент объёма dV в таком потоке является замкнутой по веществу системой (не обменивается с соседними элементами);
    • в потоке идеального вытеснения отсутствует продольное перемешивание;
    • поперечное перемешивание в потоке тоже отсутствует.

Другое название модели идеального вытеснения – поршневой поток.

Для моделирования кинетики в случае потока идеального вытеснения вполне годится подход, применимый к системам, изолированным по веществу.

Рассмотрим реакцию первого порядка, которая проходит в аппарате идеального вытеснения.

k1; 1 по А

A   В


Создадим модель, позволяю-щую рассчитать выходную концен-трацию А. Константа известна, поря-док первый.


 


 – время пребывания вещества в аппарате

 

Чем больше константа скорости k,  тем быстрее концентрация стремится к концентрации в точке выхода.

В пределах аппарата идеального вытеснения концентрация вещества не остаётся постоянной – она падает от концентрации в точке входа до концентрации в точке выхода.

2. Модель идеального  перемешивания (аппаратом такого типа является, например, печь КС, гидрометаллургический реактор для выщелачивания и т.п.).

Допущения:

    • поток стационарный, объёмный расход вещества (Q) через аппарат должен быть постоянным;
    • концентрация во всех точках аппарата идеального перемешивания одинакова.

Следствием второго допущения является то, что концентрация вещества в точке выхода равна концентрации внутри аппарата.


Среднее время пребывания вещества в аппарате – .

Время пребывания различных порций потока в аппарате идеального перемешивания неодинаково.

Элемент объёма в таком аппарате является открытой системой, для такого аппарата не годится подход для замкнутой системы. Для описания кинетики в этом случае используем закон вещества и рассматриваем аппарат, как единое целое, концентрация во всех точках одинакова. На основании закона сохранения вещества запишем уравнение материального баланса для всего аппарата в целом (в единицу времени):

 

Приход – Расход = 0

 

Пусть в условиях аппарата идеального перемешивания происходит реакция разложения первого порядка:

k1; 1 по А

A   В


 

 Материальный баланс по веществу А будет суммой составляющих:

 

 

где:

1 слагаемое – число молей вещества А, вносимое потоком в единицу времени;

2 слагаемое– унос вещества из аппарата в единицу времени;

3 слагаемое– масса вещества, израсходованного в химической реакции. Разделим обе части уравнения на величину объемного расхода Q≠0:

, откуда

.

 

Создадим для химических реакций одинаковые условия в том и другом аппарате (одинаковая температура, k1=k2). Допустим, что при определённой температуре  k1=k2=1. зададим СА0 = 1 моль/м3. Vа = 1м3, Q1 = Q2 = 1м3/с. Тогда:

   .

 

Удивительно то, что результат одной и той же химической реакции оказывается в разных аппаратах разным. Более эффективным является аппарат идеального вытеснения, в котором выходная концентрация оказывается ниже.

Причиной этого является не скорость химической реакции (она одинакова в обоих аппаратах), а наличие или отсутствие перемешивания элементов потока. В аппарате идеального перемешивания на выходе установится концентрация, являющаяся результатом перемешивания порций вещества, находившихся внутри аппарата в течение разного времени. Некоторые порции вещества проскакивают аппарат быстро, и продолжительность реакции в таких порциях мала, а концентрация вещества А, напротив, высока. Другие порции вещества находятся внутри аппарата достаточно долго, продолжительность химической реакции велика, а остаточная концентрация А - мала.

 

    1. Ячеечная модель потока. Согласно этой модели, реальный технологический аппарат заменяется идеализированной схемой – последовательность ячеек идеального перемешивания.

k1; 1 по А


A   В


Пусть n=2, тогда на выходе 1-й ячейки:


 

Если n ячеек, то

Учитывая, что – переходим к решению для аппарата идеального вытеснения. При n=1 имеем очевидное решение для аппарата идеального перемешивания.

Покажем на графиках, как увеличение количества ячеек может позволить нам перейти с помощью ячеечной модели от аппарата идеального перемешивания к аппарату идеального вытеснения.

Чтобы исключить продольное перемешивание в потоке, рабочий объём аппарата секционируют.


Применяют также каскадирование аппаратов – последовательное соединение технологических аппаратов для выравнивания результатов химических реакций.

 

Моделирование кинетики в потоках химических реакций позволяет, учитывая особенности потока, рассчитать характеристики работы оборудования (выходной состав).

 

 

Моделирование явлений тепло- и массопереноса

 

Для технологических процессов более характерным являются гетерогенные химические реакции. В таких реакциях участвующие вещества находятся в разных фазах, собственно химическая реакция осуществляется на поверхности раздела фаз. Доставка реагентов к поверхности реагирования и отвод продуктов реакции в соответствующие фазы осуществляется в результате массопереноса.

 

Массоперенос

 

Рассмотрим взаимодействие сульфида железа, одного из компонентов медного штейна, с дутьем и флюсом в условиях конвертирования медного штейна. В первом периоде конвертирования медного штейна эта реакция является основной:

 

FeS(ж1) + О2(г) + SiO2(тв) → 2FeO(тв) + SiO2(ж2) + SO2(г).

 

 

Обозначим концентрацию вещества Ся – концентрация в ядре фазы вдали от межфазной границы;


У поверхности раздела фаз концентрация этого вещества иная, обозначим ее Сп – поверхностная концентрация.

Перенос вещества из объема фазы к поверхности реагирования осуществляется в соответствии с законом Фика: ,

где

D – коэффициент диффузии;

δ – толщина диффузионного слоя;

(Ся-Сп) – движущая сила процесса, разность концентраций.

При заданных условиях (например, температуре), известном характере химической реакции, известных размерах частиц диффундирующих веществ D=const, определяется характером диффундирующих частиц и среды.

δ – зависит от гидродинамических особенностей процесса;

Информация о работе Лекции по «Моделирование процессов и объектов в металлургии»