Шпаргалка по учебной дисциплине «Теория и методика развития математических представлений у детей дошкольного возраста»

Автор работы: Пользователь скрыл имя, 18 Января 2014 в 19:59, шпаргалка

Краткое описание

Работа содержит ответы на вопросы к экзамену по учебной дисциплине «Теория и методика развития математических представлений у детей дошкольного возраста».

Вложенные файлы: 1 файл

lektsii_dlya_4_kursa_doshnach.doc

— 869.00 Кб (Скачать файл)

Первые упражнения (первый шаг в освоении сериации) должны помочь детям выделить основание сериации, т. е. тот признак, по которому можно упорядочивать, и осознать неизменность направления нарастания (или убывания) значения признака предметов. Материал для этих упражнений может быть самым разнообразным, но при подборе предметов должны соблюдаться следующие условия:

  • предметы сначала различаются только упорядочиваемыми свойствами (высотой, длиной, яркостью цвета, размером и т. д.), затем — дополнительными свойствами (разные по высоте и цвету, по цвету и форме);
  • количество предметов равно трем.

Первые сериационные задания дети выполняют по образцу, которым является готовый сериационный ряд. Образец демонстрирует, значение какого признака и в каком направлении меняется. Ребенку необходимо выделить этот признак, направление его изменения и соответственно построить такой же ряд из других предметов. В рамках-вкладышах образцом сериационного ряда являются отверстия для вкладывания предметов (квадратов разного размера, цилиндров разного диаметра, силуэтов елок разной высоты и др.).

Предметы, которые упорядочивает сам ребенок, должны обязательно отличаться от предметов в образце. К примеру, если образец — ряд матрешек разного размера, то ребенок упорядочивает новые платья для них; если образец — ряд чашек, то ребенок упорядочивает блюдца и т. д. Такой подбор предметов способствует абстрагированию признака (основания сериации) от самих предметов.

Сначала дети строят сериационные ряды по нарастанию признака. В первую очередь используются дидактические наборы без дополнительных различительных признаков (рамки-вкладыши, игрушки-вкладыши, предметы быта, игрушки, фигуры), затем — с дополнительными признаками различия (палочки Кюизенера, цветные полоски и др.). По ходу совместных игровых упражнений взрослый побуждает детей рассказывать о порядке действий. Какую полоску нужно положить сначала, чтобы получилась лесенка (ответ — самую короткую)? Какая полоска будет следующей (ответ — немного длиннее)? Какая полоска будет последней (ответ — самая длинная)?

В следующих упражнениях (второй шаг в освоении сериации) число упорядочиваемых предметов увеличивается до пяти.

Дети строят ряды как по нарастанию величины, так и по ее убыванию. Используются разнообразные упражнения на построение рядов: по образцу, с заданными крайними элементами, от заданной начальной точки (первый предмет ряда находится перед детьми), продолжение начатого ряда. Взрослый помогает детям усвоить правило выбора предмета для построения ряда: каждый раз из оставшихся предметов нужно выбирать самый маленький (короткий, низкий, тонкий и т. п.) или самый большой (длинный, высокий, толстый и т. п.).

В упражнениях на построение рядов с заданными крайними точками обозначается только начало и конец ряда. Например: лесенка, в которой только две дощечки: первая, самая длинная, и последняя, самая короткая; первый, самый высокий, и последний, самый низкий, ребенок в ряду; самая маленькая и самая большая планета и др. Дети определяют направление ряда и достраивают его.

Затем дети строят ряды по правилу от заданной начальной точки, которая может находиться и в середине ряда. В таких упражнениях ребенку сложнее выделить направление ряда. Выполнение подобных упражнений позволяет детям успешно перейти к самостоятельному построению всего ряда, т. е. самостоятельно определить направление ряда, правильно найти первый предмет ряда и построить его до конца.

Дети исправляют ошибки как в готовых реальных рядах, так и в нарисованных картинках. В таких рядах отдельные предметы находятся не на своем месте. Задача ребенка — обнаружить ошибку и исправить ряд. В результате подобных упражнений дети прочнее осваивают свойства ряда: неизменность направления и равномерность нарастания (убывания) ряда.

Дети анализируют как готовые, так и самостоятельно построенные ряды. Например, в построенных рядах дети находят все предметы, которые меньше указанного предмета, и все, которые больше его. Такие задания помогают дошкольникам подготовиться к построению рядов от любых их элементов.

В дальнейшем дети упорядочивают до 10 и более предметов в ряду (третий шаг в освоении сериации). Строят сериационные ряды из палочек Кюизенера и цветных полосок как по нарастанию, так и по убыванию значений одного и более признаков. Каждый построенный ряд анализируют с целью выявления относительности величины. Для этого взрослый предлагает ребенку выбрать любой предмет ряда и сравнить его с предметами, расположенными слева и справа.

На этом этапе дети упорядочивают предметы от любого элемента ряда, что является очень сложной задачей. Для ее решения требуется:

  • выделить сразу два направления построения ряда (одну часть ряда нужно строить по нарастанию признака, другую — по его убыванию);
  • разделить все предметы на две группы (те, которые больше, чем образец, и те, которые меньше образца);
  • построить одну часть ряда (по нарастанию или же по убыванию значения признака), затем — другую (в обратном направлении изменения значения признака).

В процессе таких упражнений развивается способность «двигаться по ряду» в двух направлениях. В результате ребенок лучше осознает относительность признака и выделяет транзитивность как свойство отношения порядка (если розовая палочка длиннее белой, а синяя длиннее розовой, то синяя длиннее белой).

Усложняются упражнения на исправление неправильных рядов реальных предметов или их изображений на картинках. Теперь в неправильных рядах единичные элементы пропущены в разных местах ряда или отсутствуют 2—3 элемента, непосредственно следующие друг за другом. Дети исправляют ошибки в рядах: находят пропущенные элементы.

С помощью полочек Кюизенера дети начинают упорядочивать числа. Величина каждого числа наглядно представлена длиной палочки (самая короткая (1 см) — число 1, длиннее (2 см) — число 2, еще длиннее (3 см) — число 3 и т. д.). Цвет также выполняет функцию обозначения конкретного числа (белый — число 1, розовый — число 2, голубой — число 3, красный — число 4 и т. д.).

Дети исследуют упорядоченные ряды цветных палочек и устанавливают, что:

  • каждая следующая палочка длиннее предшествующей на одну белую палочку;
  • каждая предшествующая палочка короче следующей за ней на одну белую палочку.

В результате таких действий формируется представление о том, что каждое следующее число в натуральном ряду чисел на 1 больше предшествующего и, наоборот, каждое предшествующее число на 1 меньше непосредственно следующего за ним числа.

Исправления деформированных рядов палочек Кюизенера (с перестановкой рядом стоящих палочек, с пропущенными палочками) развивают у детей представление о числе.

В результате последовательных разнообразных упражнений дошкольники осваивают сериацию как способ познания свойств (размера, количества, чисел). С помощью этого способа они открывают отношение порядка, познают свойства упорядоченного множества, упорядочивают объекты по разным величинам, готовятся к решению сложных задач, в основе которых лежит отношение порядка.

Классификация как способ познания свойств и отношений

Классификация — один из важнейших способов познания окружающей действительности. В ее основе лежит разбиение. Разбиение является логическим действием, суть которого состоит в разбивке непустого множества на непересекающиеся и полностью покрывающие его подмножества. Образованные подмножества именуются классами. При этом в каждый класс входит хотя бы один элемент множества и ни один из элементов множества не может входить сразу в два или более классов. Классификация — распределение элементов множества по классам. В процессе классификации выявляются и устанавливаются отношения эквивалентности по определенным свойствам. Классификация позволяет познать общие характеристические свойства классов и отношения между классами.

  1. Познание свойств групп и отношений между группами в процессе классификации предметов по признакам

Классификация по признакам — сложное умственное действие, которое включает:

  • выделение оснований классификации (общих признаков предметов), по которым будет производиться разбиение;
  • распределение объектов с разными свойствами в разные классы;
  • объединение объектов с одинаковыми (тождественными) свойствами в одно целое (класс).

Первым шагом в освоении детьми классификации является образование групп предметов, т. е. выделение из совокупности предметов тех, которые обладают одинаковыми свойствами, и объединение их в группу. Например, из множества геометрических фигур дети выбирают все круглые фигуры (и образуют из них группу), из множества игрушек — все маленькие игрушки и т. д. В процессе разнообразных упражнений по образованию групп предметов на основе разных свойств и называния общего свойства группы у детей развивается способность к обобщению. Сначала дети осваивают умение образовывать группы на основе одного свойства (все желтые фигурки), затем на основе двух, трех и более свойств (все красные квадратные фигуры, все большие треугольные синие фигуры и т. д.). Чем больше отличительных свойств имеют объекты, тем больше активизируется способность ребенка к абстрагированию, т. е. к отличению значимых для решения задачи свойств от остальных. Чтобы выделить из логических блоков группу по одному свойству, ребенок должен отличить это свойство от остальных трех. Так, чтобы образовать группу всех квадратных блоков, ему нужно абстрагировать форму от цвета, размера и толщины блока и собрать вместе все квадраты (синие, желтые, красные, большие и маленькие, толстые и тонкие). В результате упражнений на образование групп дети осваивают умение объединять вместе объекты с одинаковыми свойствами и выделять общее свойство группы.

Вторым шагом в освоении детьми классификации является распределение предметов с разными свойствами в разные группы. В игровых упражнениях и игровых обучающих ситуациях взрослый задает основание и указывает общие свойства каждой группы. Например, перед детьми — три ведерка (красное, желтое, синее). Нужно разложить все игрушки по цвету: в красное ведерко собрать все красные игрушки, в желтое — все желтые, в синее — все синие. В другом игровом упражнении детям предлагают 3 большие фигуры, серединку цветка (круг, квадрат, треугольник) и много таких же маленьких фигур — лепестков. Нужно собрать цветы — вокруг каждой большой фигуры (серединки цветка) выложить такие же по форме маленькие фигуры. В приведенных упражнениях общие свойства каждой группы обозначаются с помощью цвета ведер и форм больших фигур. Общее свойство каждой группы взрослый может обозначить по-разному, например словом или знаком. При выполнении этих упражнений важно, чтобы дети называли не только общие свойства групп (все круглые, все квадратные, все треугольные), но и основания распределения предметов по группам (разложили по форме, по размеру и т. д.), а также число полученных групп (разделили фигуры по форме и получили 3 группы: круглые, квадратные и треугольные фигуры).

В ходе таких упражнений дети усваивают, что любые два объекта одной группы одинаковы по общему свойству, а любые два предмета из разных групп — различны.

Следующим (третьим) шагом в освоении классификации являются упражнения, которые помогают детям самостоятельно обнаруживать общие свойства классов. Задание, которое получают дети, состоит в том, чтобы разделить (разложить) все предметы по указанному признаку (цвету, длине, толщине и т. д.), определить количество полученных групп, назвать общее свойство каждой группы.

При выполнении таких упражнений полезными окажутся ло- 
гические блоки Дьенеша — наборы предметов разных цветов и 
форм (см. илл. 1 цв. вкладки). Например, в игровом упражнении 
«Засели домик» ребенок получает карточку-домик (илл. 24). На 
ней нужно «расселить» блоки так, чтобы в каждой «комнате» все 
блоки были одинаковыми по цвету; затем назвать, какие блоки 
поселились в каждой «комнате» и сколько 
занято комнат. Эти же блоки в других упраж- 
нениях можно разбивать по другим основа- 
ниям (по форме, по размеру, по толщине), 
плл. ^ При каждом новом основании разбиения

меняются общие (характеристические) свойства классов. Четвертый шаг в освоении детьми классификации — упражнения, которые помогают ребенку самостоятельно найти основание классификации. Задача, стоящая перед ребенком, заключается в том, чтобы разделить любую совокупность так, чтобы вместе оказались все одинаковые предметы. Например, взрослый предлагает детям несколько домиков для «расселения» блоков (илл. 25).

Каждый ребенок должен сначала ре- I      I шить, как он «расселит» блоки, а затем выбрать тот домик, который для этого

подходит. Условия «расселения»: все . . . .

блоки должны попасть в дом; в каждой комнате должны «жить» только одинако- |      |      | вые блоки; в доме не должно быть пустых комнат.

Таким образом, в процессе освоения

классификации ребенок движется от 

умения объединять вместе предметы с Илл. 25

одинаковыми свойствами и выделять общие свойства группы к умениям распределять предметы с разными свойствами в разные группы; разбивать совокупность на группы по заданному основанию классификации; выделять основание классификации.

Упражнения на классификацию дети могут выполнять на разном предметном материале (игрушки, предметы быта, природный материал, геометрические фигуры и пр.). Но не всегда, к сожалению, такой материал может включать в действие абстрагирование одних свойств от других. В то же время любая задача на классификацию с логическими блоками требует от ребенка умения «абстрагировать» одни свойства от других. Если основанием классификации является форма, то нужно ее отвлечь от цвета, размера, толщины блоков; если же размер основанием является, не нужно обращать внимание на форму, цвет, толщину блоков. Логические блоки и материалы, сконструированные по их типу, являются незаменимыми в освоении детьми классификации — важнейшего способа познания свойств и отношений.

Информация о работе Шпаргалка по учебной дисциплине «Теория и методика развития математических представлений у детей дошкольного возраста»