Виды средних величин

Автор работы: Пользователь скрыл имя, 10 Ноября 2014 в 18:26, контрольная работа

Краткое описание

В статистике применяются степенные и структурные средние (рис 1), выбор вида которой определяется содержанием определённого показателя и исходных данных.
Статистические средние рассчитываются на основе массовых данных правильно статистически организованного массового наблюдения (сплошного и выборочного). Однако статистическая средняя будет объективна и типична, если она рассчитывается по массовым данным для качественно однородной совокупности (массовых явлений). Например, если рассчитывать среднюю заработную плату в кооперативах и на госпредприятиях, а результат распространить на всю совокупность, то средняя фиктивна, так как рассчитана по неоднородной совокупности, и такая средняя теряет всякий смысл.

Содержание

I. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ 3
ВИДЫ СРЕДНИХ ВЕЛИЧИН. ОБУСЛОВЛЕННОСТЬ ВЫБОРА СРЕДНЕЙ ХАРАКТЕРОМ ИСХОДНОЙ ИНФОРМАЦИИ. 3
1.1 СТЕПЕННЫЕ СРЕДНИЕ 6
1.2 СТРУКТУРНЫЕ СРЕДНИЕ. 12
II. РАСЧЕТНАЯ ЧАСТЬ 15
ЗАДАЧА № 1. 15
ЗАДАЧА № 2. 18
ЗАДАЧА № 3. 25
ЗАДАЧА № 4. 27
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 31

Вложенные файлы: 1 файл

статистика.doc

— 569.50 Кб (Скачать файл)

 

 

 

СОДЕРЖАНИЕ

 

 

I. Теоретическая часть

 

Вариант № 10:

 

Виды средних величин. Обусловленность выбора средней характером исходной информации.

В статистике применяются степенные и структурные средние (рис 1), выбор вида которой определяется содержанием определённого показателя и исходных данных.

Статистические средние рассчитываются на основе  массовых  данных правильно статистически организованного массового наблюдения (сплошного и выборочного).  Однако статистическая средняя будет  объективна  и типична, если  она  рассчитывается  по массовым данным для качественно однородной совокупности (массовых явлений).  Например,  если рассчитывать среднюю  заработную плату в кооперативах и на госпредприятиях,  а результат распространить на всю совокупность, то средняя фиктивна, так как рассчитана  по  неоднородной совокупности,  и такая средняя теряет всякий смысл.

При помощи средней происходит как бы сглаживание различий в величине признака,  которые возникают по тем или иным причинам у отдельных единиц наблюдения.

Например, средняя выработка продавца зависит  от  многих  причин: квалификации, стажа,  возраста,  формы обслуживания,  здоровья и т.д.

Средняя выработка отражает общее свойство всей совокупности.

Средняя величина является отражением значений изучаемого признака, следовательно, измеряется в той же размерности, что и этот признак.

Каждая средняя  величина  характеризует изучаемую совокупность по какому-либо одному признаку.  Чтобы  получить  полное  и  всестороннее представление об  изучаемой  совокупности по ряду существенных признаков, в целом необходимо располагать системой средних величин,  которые могут описать явление с разных сторон.

К степенным средним относятся следующие виды: арифметическая, гармоническая, хронологическая, квадратическая и геометрическая.

Выбор вида степенной средней зависит от содержания логической формулы расчёта осредняемого признака и имеющихся исходных данных, на основании которых производится расчёт.

Структурные средние представлены модой и медианой. Средняя имеет те же единицы измерения, что и варианты х. Если осредняются относительные величины, то средняя представляется коэффициентом (%,‰).


 

 

 

 

 

 

 

 

 

 

Рис.1. Виды средних в статистике

Также виды средних  разделяются по:

1. Наличию признака-веса:

а) невзвешенная средняя величина;

б) взвешенная средняя величина.

2. Форме расчета:

а) средняя арифметическая величина;

б) средняя гармоническая величина;

в) средняя геометрическая величина;

г) средняя квадратическая, кубическая и т.д. величины.

3. Охвату совокупности:

а) групповая средняя величина;

б) общая средняя величина.

Средние величины различаются в зависимости от учета признаков, влияющих на осредняемую величину:

Если средняя величина рассчитывается для признака, без учета влияния на него каких-либо других признаков, то такая средняя величина называется средней невзвешенной или простой средней.

Если имеются сведения о влиянии на осредняемый признак некоторого признака или нескольких признаков, которые необходимо учесть при расчете для корректного расчета средней величины, то рассчитывается средняя взвешенная.

По форме расчета выделяют несколько видов средних величин, которые образованы из единой степенной средней величины. Степенная средняя величина имеет форму:

,

где - среднее значение исследуемого явления;

k – показатель степени средней;

x – текущее значение (вариант) осредняемого признака;

i –i-тый элемент совокупности;

n – число наблюдений (число единиц  совокупности).

При разных показателях степени k получаем, соответственно, различные по форме средние величины. (Табл. 1):

Таблица 1

Формы средних величин

Степень средней величины (k)

Название средней

-1

гармоническая

0

геометрическая

1

арифметическая

2

квадратическая

3

кубическая

1

хронологическая


 

Выбор формы средней обусловлен исходным соотношением, суть которого приводилась выше. Существует порядок расчета средней величины:

1. Определение исходного соотношения  для исследуемого показателя.

2. Определение недостающих данных  для расчета исходного соотношения.

3. Расчет средней величины.

Рассмотрим виды средних, которые наиболее часто используются в статистике.

1.1 Степенные  средние

 

1. Средняя арифметическая.

Средней арифметической величиной называется такое среднее значение признака, при вычислении которого общий объём признака в совокупности остаётся неизменным. Иначе можно сказать, что средняя арифметическая величина – среднее слагаемое. При её вычислении общий объём признака мысленно распределяется поровну между всеми единицами совокупности.

Средняя арифметическая применяется, если известны значения осредняемого признака (х) и количество единиц совокупности с определённым значением признака (f).

Средняя арифметическая бывает простой и взвешенной.

Средняя арифметическая простая

Простая используется, если каждое значение признака х встречается один раз, т.е. для каждого х значение признака f=1, или если исходные данные не упорядочены и неизвестно, сколько единиц имеют определённые значения признака.

Формула средней арифметической простой имеет вид:

,

где - средняя величина; х – значение осредняемого признака (варианта), - число единиц изучаемой совокупности.

 

Средняя арифметическая взвешенная

В отличие от простой средней средняя арифметическая взвешенная применяется, если каждое значение признака х встречается несколько раз, т.е. для каждого значения признака f≠1. Данная средняя широко используется при исчислении средней на основании дискретного ряда распределения:

,

где - число групп, х – значение осредняемого признака, f- вес значения признака (частота, если f – число единиц совокупности; частость, если f- доля единиц с вариантой х в общем объёме совокупности).

Расчёт средней по интервальному ряду

Статистический материал в результате обработки может быть  представлен не  только  в виде дискретных рядов распределения,  но и в виде интервальных вариационных рядов с закрытыми или открытыми интервалами.

Если исходные данные заданы в виде интервального ряда, то:

  1. закрывают открытые интервалы, приняв их равными ближайшим закрытым;
  2. за значения осредняемого признака х берут середины интервалов и строят условный дискретный ряд распределения:

               ,

где - значение нижней границы интервала («от»); - значение верхней границы интервала («до»).

  1. расчёт средней производится по средней арифметической взвешенной.

Способ моментов

Если интервальный ряд имеет равные интервалы или дискретный ряд построен с одним и тем же шагом между ближайшими значениями признака, для расчёта средней применим способ «моментов». Алгоритм метода заключается в следующем:

    1. строится новый дискретный ряд распределения, в котором одна из вариант приравнивается к нулю. К нулю можно приравнять любую варианту, но для упрощения расчётов лучше «занулить» варианту, находящуюся в середине ряда и имеющую наибольшую частоту. Нулевая варианта называется основанием и обозначается ;
    2. остальные варианты нового ряда обозначаются и рассчитывается по формуле:

    , где h – ширина равного интервала или шага; x’ – условные варианты;

    1. определяется средняя по способу моментов:

,   где  - момент первого порядка.

Свойства средней арифметической

Средняя арифметическая обладает рядом свойств:

  1. От уменьшения или увеличения частот каждого значения  признака х в n раз величина средней арифметической не изменится.
  2. Если все частоты разделить или умножить на какое-либо число,  то величина  средней не изменится.
  3. Общий множитель индивидуальных значений  признака  может  быть вынесен за знак средней:

                         

  1. Средняя  суммы  (разности)  двух  или нескольких величин равна сумме (разности) их средних:

                               

  1. Если х = с, где с - постоянная величина, то .
  2. Сумма отклонений значений признака Х от средней арифметической х равна нулю:

                .

2. Средняя гармоническая.

Наряду со средней арифметической, в статистике применяется средняя гармоническая величина,  обратная  средней  арифметической из обратных значений признака. Как и средняя арифметическая, она может быть простой и взвешенной. Применяется она тогда, когда необходимые веса (fi) в исходных данных не заданы непосредственно, а входят сомножителем в одни из имеющихся показателей (т.е. тогда, когда известен числитель исходного соотношения средней, но неизвестен его знаменатель). 

Средняя гармоническая взвешенная

Произведение xf даёт объём осредняемого признака х для совокупности единиц и обозначается w.  Если в исходных данных имеются значения осредняемого признака х и объём осредняемого признака w, то для расчёта средней применяется гармоническая взвешенная:

,

где х – значение осредняемого признака х (варианта); w – вес варианты х, объем осредняемого признака.

Средняя гармоническая невзвешенная (простая)

Эта форма средней, используемая значительно реже, имеет следующий вид:

,

где х – значение осредняемого признака; n – число значений х.

Т.е. это обратная величина средней арифметической простой из обратных значений признака.

На практике средняя гармоническая простая применяется редко, в тех случаях, когда значения w для единиц совокупности равны.

3. Средняя квадратическая и средняя кубическая

В ряде случаев в экономической практике возникает потребность расчета среднего размера признака, выраженного в квадратных или кубических единицах измерения. Тогда применяется средняя квадратическая (например, для вычисления средней величины стороны и квадратных участков, средних диаметров труб, стволов и т.п.) и средняя кубическая (например, при определении средней длины стороны и кубов).

Если при замене индивидуальных величин признака на среднюю величину необходимо сохранить неизменной сумму квадратов исходных величин, то средняя будет являться квадратической средней величиной, простой или взвешенной.

Средняя квадратическая простая

Простая используется, если каждое значение признака х встречается один раз, в общем имеет вид:

,

где - квадрат значений осредняемого признака; - число единиц совокупности.

Средняя квадратическая взвешенная

Средняя квадратическая взвешенная применяется, если каждое значение осредняемого признака х встречается f раз:

,

где f – вес варианты х.

Средняя кубическая простая и взвешенная

Средняя кубическая простая является кубическим корнем из частного от деления суммы кубов отдельных значений признака на их число:

,

где - значения признака, n- их число.

Средняя кубическая взвешенная:

,

где f-вес варианты х.

Средние квадратическая и кубическая имеют ограниченное применение в практике статистики. Широко пользуется статистика средней квадратической, но не из самих вариантов x, и из их отклонений от средней при расчете показателей вариации.

Информация о работе Виды средних величин